domvpavlino.ru

Какие органические удобрения содержат азот. Что такое азот и для чего используется? Если разорвать тройную связь

Материал подготовил: Алексей Степанов, эколог

Прежде чем перейти непосредственно к азотным удобрениям, нужно понимать, что важнейшим источником азота в питании растений, прежде всего, является сама почва . Обеспеченность растений почвенным азотом в конкретных условиях различных почвенно-климатических зон неодинакова. В этом отношении наблюдается тенденция к возрастанию ресурсов почвенного азота в направлении от более бедных почв подзолистой зоны к относительно обеспеченным азотом мощным и обыкновенным черноземам. Крайне бедны азотом легкие песчаные и супесчаные почвы.

Главные запасы азота в почве сосредоточены в её гумусе, содержащем около 5% азота. Поэтому, чем выше содержание в почве гумуса и чем мощнее пропитанный им слой почвы, тем лучше и обеспечение урожая азотом. Гумус – весьма стойкое вещество; и его распад микроорганизмами с выделением минеральных солей протекает крайне медленно. Поэтому лишь около 1% азота в почве от общего его содержания представляется воднорастворимыми минеральными соединениями, доступными растениям.

Органический азот почвы доступен растениям только после его минерализации – процесса, осуществляемого почвенными микроорганизмами, использующими органическое вещество почвы в качестве источника энергии. Интенсивность минерализации органического азота также зависит от физико-химических свойств почв, условий влажности, температуры, аэрации и т.п.

Также азот может поступать из атмосферы с осадками и непосредственно из воздуха, с помощью так называемых азотофиксаторов: некоторые бактерии, грибки и водоросли. Но этого азота сравнительно мало, и он может играть роль в азотном питании в результате накопления за долгие годы на непахотных и целинных землях.

Азот в жизни растений

Не все органические вещества растений содержат в своем составе азот. Его нет, например, в самом распространенном соединении – клетчатке, отсутствует он в сахарах, крахмале, маслах, которые синтезирует растение. Но в составе аминокислот и образующихся из них белков обязательно имеется азот. Входит он и в нуклеиновые кислоты, вторые по важности вещества любой живой клетки, представляющие особое значение для построения белков и несущие наследственные признаки организма. Живые катализаторы – ферменты — тоже белковые тела. Азот содержится в хлорофилле, без которого растения не могут усваивать солнечную энергию. Азот входит в липоиды, алкалоиды и многие другие органические соединения, возникающие в растениях.

Из вегетативных органов больше всего азота имеют молодые листья, но по мере старения азот передвигается во вновь появляющиеся молодые листья и побеги. В дальнейшем, после опыления цветков и завязывания плодов, происходит все более и более выраженное передвижение соединений азота в репродуктивные органы, где они и накапливаются в форме белков. Вегетативные органы к моменту созревания семян оказываются значительно обедненными азотом.

Но если растения получают избыточное азотное питание, то его накапливается много во всех органах; при этом наблюдается бурное развитие вегетативной массы, что затягивает созревание и может снижать долю желаемых продуктов в общем урожае возделываемой культуры.

Нормальное азотное питание не только повышает урожай, но и улучшает его качество. Это выражается в увеличении процента белка и содержания более ценных белков.

Нормально обеспеченные азотом культуры быстро растут, их листья отличаются интенсивным темно-зеленым цветом и большими размерами. Напротив, недостаток азота задерживает рост всех органов растения, листья имеют светло-зеленую окраску (мало хлорофилла, который не образуется из-за слабой обеспеченности растения азотом) и нередко бывают мелкими. Урожай падает, в семенах снижается содержание белков. Поэтому, при недостатке органического азота в почве, необходимость обеспечения нормально азотного питания растений с помощью удобрений является очень важной задачей для земледелия.

Применение азотных удобрений и нормы внесения

При внесении азотных удобрений повышается урожай практически всех культур. Азотные удобрения в сельском хозяйстве и огородничестве применяются повсеместно: для овощных культур, для , для плодово-ягодных культур, плодовых деревьев, кустарников, винограда, земляники, декоративных растений, цветов ( , пионы, тюльпаны и др.), также используют для рассады и газонов.

Нормы внесения

  • Для садов и огородов средней дозой для основного внесения под картофель, овощные, плодово-ягодные и цветочные культуры следует считать 0,6-0,9 кг азота на 100 м².
  • При подкормках для картофеля, овощных и цветочных культур – 0,15-0,2 кг азота на 100 м²., для плодово-ягодных культур – 0,2 – 0,3 кг азота на 100 м².
  • Для приготовления раствора берут 15-30 г азота на 10 л воды при распределении раствора на 10².
  • Для внекорневой подкормки применяют 0,25-5% растворы (25-50 г на 10 л воды) при распределении на 100-200 м².

Все значения приведены без учета процентного содержания азота в каждом виде удобрения, для пересчета на удобрения, необходимо разделить на процентное содержания азота в удобрении и умножить на 100.

К азотным удобрениям относятся минеральные удобрения и органические, сначала рассмотрим минеральные азотные удобрения.

Виды минеральных азотных удобрений

Весь ассортимент производства азотных удобрений можно объединить в 3 группы:

  1. Аммиачные удобрения (например, сульфат аммония, хлористый аммоний);
  2. Нитратные удобрения (например, кальциевая или натриевая селитра);
  3. Амидные удобрения (например, мочевина).

Кроме этого, выпускаются удобрения, содержащие азот одновременно в аммиачной и нитратной форме (например, аммиачная селитра).

Основной ассортимент производства азотных удобрений:

Вид азотного удобрения Содержание азота
Аммиачные
Аммиак безводный 82,3%
Аммиачная вода 20,5%
Сульфат аммония 20,5-21,0%
Хлористый аммоний 24-25%
Нитратные
Натриевая селитра 16,4%
Кальциевая селитра 13,5-15,5%
Аммиачно-нитратные
Аммиачная селитра 34-35%
Известково-аммиачная селитра 20,5%
Аммиакаты на основе аммиачной селитры 34,4-41,0%
Аммиакаты на основе кальциевой селитры 30,5-31,6%
Сульфонитрат аммония 25,5-26,5%
Амидные
Цианамид кальция 18-21%
Мочевина 42,0-46,2%
Мочевина-формальдегид и метилен-мочевина (медленно действующие) 38-42%
Аммиакаты на основе мочевины 37-40%

Азотно-фосфорно-калийные удобрения

Использование азотных удобрений часто необходимо в комплексе с фосфорными и удобрениями. Например, существует смесь аммиачной селитры, суперфосфата и костной или доломитовой муки. Однако в разные фазы развития растения, ему необходимы различные соотношения удобрений. Например, в период цветения, избыток азота может только ухудшить конечный урожай. Естественно растению необходимы эти три самых важных элемента питания, однако существуют и другие макро и микроэлементы, необходимые для оптимального развития растения. Так что азотно-фосфорно-калийные удобрения — это не панацея.

Ниже приведена классификация минеральных азотных удобрений:

Аммиачные и аммиачно-нитратные удобрения

Аммиачная селитра

(NH4NO3) высокоэффективное удобрение, содержит около 34-35% азота. Может быть применена как для основного внесения, так и для подкормок. Аммиачная селитра — безбалластное удобрение, особенно эффективна на слабоувлажненных территориях, когда наблюдается большая концентрация почвенного раствора. На переувлажненных территориях, аммиачная селитра менее эффективна, возможно вымывание её в грунтовые воды с осадками. На легких песчаных почвах не следует вносить удобрение с осени.

Мелкокристаллическая аммиачная селитра быстро слеживается, следовательно её необходимо хранить в помещении, недоступном для влаги и в водонепроницаемой ёмкости. Необходимо измельчать перед внесением в почву, чтобы не создавать очагов повышенной концентрации удобрения.

При смешивании с необходимо добавить к смеси около 15% нейтрализующего вещества, таким веществом может служить мел, мелкая известь, доломит. При заготовке смеси необходимо к суперфосфату сначала добавить нейтрализующее веество.

Сама по себе аммиачная селитра за счет своего действия повышает кислотность почвы. Влияние в начале использования может быть незаметно, но в перспективе кислотность будет увеличиваться. Поэтому рекомендуем добавлять нейтрализующее вещество к аммиачной селитре на 1 кг около 0,7 кг нейтрализующего вещества, типа мела, извести, доломита, последний особенно хорош на легких песчаных почвах, так как содержит магний.

В данный момент чистая аммиачная селитра не встречается в розничной продаже, а существуют уже готовые смеси. Исходя из вышесказанного, хорошим вариантом является смесь 60% аммиачной селитры и 40% нейтрализующего вещества, в такой смеси получается около 20% азота.

Сульфат аммония

Сульфат аммония (NH4)2SO4 в нём содержится около 20,5% азота.

Азот сульфата аммония является доступным растениям и хорошо закрепляется в почве, так как содержит азот в виде катиона, который менее подвижен в почвенном растворе. Поэтому это удобрение можно применять и осенью, не боясь больших потерь азота за счет вымывания в нижние горизонты или грунтовые воды. Очень хорошо подходит для основного внесения, но также подойдет и для подкормок.

Оказывает подкисляющее действие, поэтому как и в случае с аммиачной селитрой, необходимо добавлять на 1 кг 1,15 кг нейтрализующего вещества: мела, мелкой извести, на легких песчаных почвах доломита.

По сравнению с аммиачной селитрой, мало увлажняется, менее требователен к условиям хранения. Однако не следует смешивать с щелочными удобрениями, такими как зола, томасшлак, гашеная известь, потому что возможны потери азота.

По результатам научных исследований сульфат аммония даёт отличные результаты при использовании его под картофель.

Сульфонитрат аммония

Сульфонитрат аммония – аммиачно-нитратное удобрение, соержит около 26% азота, 18% в аммиачной и 8% в нитратной форме. Сплав аммиачной селитры и сульфата аммония. Потенциальная кислотность высокая. На подзолистых почвах, требуются такие же меры предосторожности, как и в случае аммиачной селитры.

Хлористый аммоний

Хлористый аммоний (NH4Cl) – белый или желтый порошок, мелкокристаллический, содержит около 25% азота. Хлористый аммоний обладает хорошими физическими свойствами: практически не слеживается, хорошо рассеивается, закрепляется в почве. Азот хлористого аммония легко доступен растениям.

Однако это удобрение имеет один существенный недостаток: на 100 кг азота в почву поступает около 250 кг хлора , который наносит вред растениям. Следовательно, применять данное удобрение можно только основным способом и осенью, чтобы вредный хлор спустился в нижележащие горизонты, однако при таком способе в любом случае неизбежны потери азота. Хлористый аммоний целесообразно применять на почвах, богатых основаниями.

Нитратные удобрения

Натриевая селитра

Натриевая селитра (NaNO3) — высокоэффективное удобрение, представляет собой прозрачные кристаллы, содержание азота около 16%. Натриевая селитра очень хорошо усваивается растениями, щелочное удобрение, что даёт преимущество перед аммиачными видами удробрений, при использовании на кислых почвах. Нельзя вносить натриевую селитру осенью , потому что произойдет существенное вымывание азота из удобрения в грунтовые воды. Натриевая селитра очень хорошо подходит для подкормок и использования при посеве. Научные исследования показывают, что натриевая селитра дает отличные результаты при её применении на свёкле.

Кальциевая селитра

Кальциевая селитра (Ca(NO3)2) – содержит сравнительно немного азота, около 15%. Отлично подходит для почв нечерноземной зоны, так как является щелочным. При систематическом применении кальциевой селитры, свойства кислых подзолистых почв улучшаются. Удобрение требовательно к хранению, быстро увлажняется и слеживается, перед применением необходимо измельчать.

Амидные удобрения

Мочевина

(CO(NH2)2) – высокоэффективное безбалластное удобрение, содержит 46% азота. Вы можете встретить такое название как карбамид – это второе название мочевины. Мочевина разлагается в почве постепенно, однако достаточно подвижна, и заделывать осенью не рекомендуется. Потенциальная кислотность близка к аммиачной селитре, так что при применении на кислых почвах, необходимо применять нейтрализующие вещества. Мочевина разлагается в почве под действие фермента уреазы, который находит в достаточном количестве практически во всех почвах. Однако если вы используете минеральные удобрения в комплексе с органическими, то данной проблемы возникать не будет.

Мочевина является отличным удобрением для внекорневой подкормки. По сравнению с аммиачной селитрой, она не обжигает листья и даёт отличные результаты. Для основного внесения весной и подкормок мочевина также подойдёт отлично, однако цена 1 кг азота мочевины будет больше 1 кг азота аммиачной селитры.

При производстве гранулированного карбамида, появляется вредное для растений вещество – биурет. Его содержание не должно превышать 3%.

Жидкие азотные удобрения

Преимуществами жидких удобрений являются:

  • Меньшая стоимость единицы азота;
  • Лучшая усвояемость растениями;
  • Более длительный срок действия;
  • Возможность равномерного распределения.

Недостатки жидких удобрений:

  • Сложность хранения (не следует держать в домашних условиях) и транспортировки;
  • При попадании на листья вызывают их ожоги;
  • Необходимость специальных инструментов для внесения.

Жидкий аммиак (NH3) – газ с резким запахом, имеет около 82% азота. Быстро испаряется, при соприкосновении с другими телами, охлаждает их. Имеет сильное давление пара. Для успешного применения необходимо заделывать в почву на глубину не менее 8 см , чтобы удобрение не улетучивалось. Также существует аммиачная вода — результат растворения жидкого аммиака в воде. Содержит около 20% азота.

Органические азотные удобрения

Азот в небольшом количестве (0,5-1%) содержат все виды навоза, (1-2,5%) больше всего в процентном соотношении в утином, курином и голубином помете, но он также и самый токсичный.

Природные органические азотные удобрения можно сделать и своими руками: компостные кучи (особенно на ) содержат некоторое количество азота (до 1,5%), компост из бытового мусора также содержит до 1,5 % азота. Зеленая масса (люпин, донник, вика, клевер) содержат около 0,4-0,7% азота, зеленая листва содержит 1-1,2%, озерный ил (1,7-2,5%).

Однако использование органических удобрений как единственного источника азота нерационально , так как это может ухудшить качество почвы, например подкислить её, и не создаст необходимого азотного питания растениям. Рациональным все же является использование комплекса минеральных азотных удобрений и органических.

Нитраты и нитриты

- вовлекаются в синтез аминокислот только после восстановления в тканях растения. Редукция нитратов до аммиака проходит уже в корнях. Этот процесс осуществляется с помощью флавиновых металлоферментов, с сопровождением изменения валентности атомов азота. При поступлении нитратного азота в растения в избытке часть его в неизменном состоянии доходит до листьев, где происходит восстановление нитратов.

Нитратный азот растения могут накапливать в значительных количествах, без особого вреда для собственной жизнедеятельности.

Биосинтез аминокислот (аминирование)

Аминирование

(биосинтез аминокислот) осуществляется в результате взаимодействия аммиака с кетокислотами (пировиноградной, щавеллевоуксусной, кетоглуаровой и др.). Данные кислоты образуются в процессе дыхания при окислении углеводородов. Аминирование проходит с помощью ферментов.

В аминокислотах азот присутствует в виде аминогруппы - NH 2 . Образование аминокислот может происходить как в подземной (корнях), так и в наземных частях растений.

Установлено, что уже через несколько минут после растений аммиачными удобрениями в их тканях обнаруживаются аминокислоты, синтезированные с использованием внесенного в аммиака. Первой аминокислотой, образующейся в растении, является аланин, затем синтезируются аспарагиновая и глутаминовая кислоты.

Переаминирование аминокислот

Реакция переаминирования аминокислот заключается в переносе аминогруппы с аминокислоты на кетокислоту. При этом образуются другие амино- и кетокислоты. Эта реакция катализируется ферментами аминоферазами и трансаминазами.

Путем переаминирования синтезируется значительное число аминокислот. Наиболее легко в этот процесс вовлекаются глутаминовая и аспарагиновая кислоты.

Разнообразие белковых и небелковых азотистых соединений

Как указывалось ранее, аминокислоты представляют собой основные структурные единицы белков и полипептидов, поскольку белки образуются из синтезированных в полипептидные цепи аминокислот. Различный набор и пространственное расположение аминокислот в полипептидных цепях способствуют синтезу огромного разнообразия белков. Известно свыше 90 аминокислот. Значительная их часть (около 70) присутствует в растительных тканях в свободном состоянии и не входит в состав белковых молекул.

В состав белков растений входят незаменимые для жизнедеятельности человека и животных белки: лизин, фенилаланин, триптофан, валин, треонин, метионин и другие. В организме млекопитающих и других высших животных данные белки синтезироваться не могут.

Дезаминирование аминокислот

Белки и небелковые азотистые соединения находятся в тканях растений в подвижном равновесии. Наряду с синтезом аминокислот и белковых соединений, постоянно проходят процессы их распада.

Реакция дезаминирования

заключается в отщеплении аминогруппы от аминокислоты с образованием кетокислоты и аммиака. Освободившаяся кетокислота идет на биосинтез углеводов, жиров и прочих веществ. Аммиак вступает в реакцию аминирования других кетокислот, образуя соответствующие аминокислоты. При избытке аммиака образуются аспарагин и глутамин.

Весь сложнейший цикл трансформации и превращения азотистых соединений в растении начинается с аммиака и завершается аммиаком.

Обмен азотистых веществ в различные периоды развития растения

За время роста растения синтезируют большое количество разнообразных белков, и в разные периоды роста процесс обмена азотистых веществ протекает по-разному.

При прорастании семенного материала наблюдается распад ранее запасенных белков. Продукты распада идут на синтез аминокислот, амидов и белков в тканях проростков до выхода их на поверхность почвы.

По мере образования листового аппарата и корневой системы синтез белков проходит за счет минерального азота, поглощенного из почвы.

В органах молодых растений преобладает синтез белков. В процессе старения распад белковых веществ начинает преобладать над синтезом. Из стареющих органов продукты распада движутся в молодые, интенсивно растущие, где и находят применение для синтеза белка в точках роста.

При созревании и формировании репродуктивных органов растения происходит распад веществ в вегетативных частях растений и передвижение их в репродуктивные органы, где они используются в процессах синтеза запасных белков. В это время потребление азота из почвы значительно ограничивается или совсем прекращается.

Недостаток (дефицит) азота в растениях

Азот плохо усваивается растениями при холодной погоде, на кислых неизвесткованных почвах, на почвах, содержащих большое количество небобовых культур и опилок.

Первый признак азотного голодания - изменение окраски листовой пластинки с зеленой на бледно-зеленую, а затем желтоватую и бурую из-за недостаточного образования хлорофилла.

При дальнейшем усилении дефицита азота размер листьев уменьшается. Они становятся узкими, мелкими, располагаются под острым углом к стеблю или ветви. Ветвление у растений ослабляется, уменьшается число плодов, зерен или семян.

Азот – это химический элемент с атомным номером 7. Является газом без запаха, вкуса и цвета.


Таким образом, человек не ощущает присутствия азота в земной атмосфере, между тем как она состоит из этого вещества на 78 процентов. Азот относится к самым распространенным веществам на нашей планете. Часто можно слышать, что без азота не было бы , и это правда. Ведь белковые соединения, из которых состоит все живое, обязательно содержат в себе азот.

Азот в природе

Азот находится в атмосфере в виде молекул, состоящих из двух атомов. Помимо атмосферы, азот есть в мантии Земли и в гумусном слое почвы. Основной источник азота для промышленного производства – это полезные ископаемые.

Однако в последние десятилетия, когда запасы минералов стали истощаться, возникла острая необходимость выделения азота из воздуха в промышленных масштабах. В настоящее время эта проблема решена, и огромные объемы азота для нужд промышленности добываются из атмосферы.

Роль азота в биологии, круговорот азота

На Земле азот претерпевает ряд трансформаций, в которых участвуют и биотические (связанные с жизнью) и абиотические факторы. Из атмосферы и почвы азот поступает в растения, причем не напрямую, а через микроорганизмы. Азотфиксирующие бактерии удерживают и перерабатывают азот, превращая его в форму, легко усваиваемую растениями. В организме растений азот переходит в состав сложных соединений, в частности – белков.

По пищевой цепи эти вещества попадают в организмы травоядных, а затем – хищников. После гибели всего живого азот вновь попадает в почву, где подвергается разложению (аммонификации и денитрификации). Азот фиксируется в грунте, минералах, воде, попадает в атмосферу, и круг повторяется.

Применение азота

После открытия азота (это произошло в 18-м столетии), были хорошо изучены свойства самого вещества, его соединений, возможности использования в хозяйстве. Поскольку запасы азота на нашей планете огромны, данный элемент стал использоваться крайне активно.


Чистый азот применяется в жидком или газообразном виде. Жидкий азот имеет температуру минус 196 градусов по Цельсию и применяется в следующих областях:

в медицине. Жидкий азот является хладагентом при процедурах криотерапии, то есть лечения холодом. Мгновенная заморозка применяется для удаления различных новообразований. В жидком азоте хранят образцы тканей и живые клетки (в частности – сперматозоиды и яйцеклетки). Низкая температура позволяет сохранить биоматериал в течение длительного времени, а затем разморозить и использовать.

Возможность хранить в жидком азоте целые живые организмы, а при необходимости размораживать их без всякого вреда высказана писателями-фантастами. Однако в реальности освоить эту технологию пока не удалось;

в пищевой промышленности жидкий азот используется при розливе жидкостей для создания инертной среды в таре.

Вообще азот применяется в тех областях, где необходима газообразная среда без кислорода, например,

в пожаротушении . Азот вытесняет кислород, без которого процессы горения не поддерживаются и огонь затухает.

Газообразный азот нашел применение в таких отраслях:

производство продуктов питания . Азот используется как инертная газовая среда для сохранения свежести продуктов в упаковке;

в нефтедобывающей промышленности и горном деле . Азотом продувают трубопроводы и резервуары, его нагнетают в шахты для формирования взрывобезопасной газовой среды;

в самолетостроении азотом накачивают шины шасси.

Все вышесказанное относится к применению чистого азота, но не стоит забывать, что этот элемент является исходным сырьем для производства массы всевозможных соединений:

— аммиак. Чрезвычайно востребованное вещество с содержанием азота. Аммиак идет на производство удобрений, полимеров, соды, азотной кислоты. Сам по себе применяется в медицине, изготовлении холодильной техники;

— азотные удобрения;

— взрывчатые вещества;

— красители и т.д.


Азот – не только один из наиболее распространенных химических элементов, но и очень нужный компонент, применяемый во многих отраслях человеческой деятельности.

В дачно-огородном деле азотные удобрения являются основным веществом, которое обеспечивает растению хорошее уплотнение корней, появление новых листков, рост цветков и развитие плодов.

Азотная подпитка особенно важна для плодово-ягодных культур. Она обеспечивает увеличение роста плодов и улучшает их вкусовые качества. Азот легко усваивается в таких видах грунта, как подзолистые, торфяники, черноземы.

Много азота содержится в органических соединениях, однако, такая его форма выступает своеобразной приманкой для множества вредителей. Под влиянием большого количества насекомых растение может и не выжить. Поэтому дачники применяют более полезную для садово-огородных культур форму азотного удобрения на основе минералов.

При недостаточном количестве азотистых удобрений растение очень слабо растет, проходит медленное развитие вегетативных органов, листья вырастают не большие, их внешний вид окрашен желтоватым оттенком, и вскоре они преждевременно осыпаются. Эти процессы губительно действуют на растение, и могут привести к прерыванию периода цветения и сокращению плодоношения.

Вовремя и правильно внесенные азотные минеральные удобрения, будет способствовать здоровому развитию растения и получению желаемого результата для дачника.

Жидкие азотные удобрения

Производство жидких удобрений обходится намного дешевле, нежели твердые им аналоги. Потому и жидкие удобрения можно приобрести по меньшим ценам. Эффективность таких удобрений не зависит от их природного состояния.

Большинство дачников, которые только начинают садово-огородное дело интересуются, жидкие азотные удобрения это какие?

Существуют три основных вида азотных соединений, предназначенных для удобрения почвы:

  • Безводный аммиак;
  • Аммиачная вода;
  • Аммиакаты.

Безводный аммиак. Довольно концентрированный раствор, который имеет вид бесцветной жидкости. Безводный аммиак создают в заводских условиях, в результате сжижения аммиака с газообразного состояния под воздействием высокого давления. В полученной жидкости содержится 82,3% азота.

Азотное удобрение в жидком состоянии хранится в плотно закрытых емкостях. Нельзя хранить его в посудинах из меди, цинка и подобных сплавов. Рекомендуют использовать железную тару, или же стальную и чугунную. Безводный аммиак необходимо хранить в закрытых емкостях, поскольку он имеет свойство быстро испаряться.

Аммиачная вода. Концентрация азота в этом удобрении составляет около 16,4% минимум и до 20,5% максимум. Она не производит разрушительного действия на черные металлы. Аммиачная вода имеет небольшое давление, что позволяет хранить ее в посудинах из углеродистой стали. Такой вид жидкого азотного удобрения применять на больших расстояниях не выгодно и не практично, поскольку азот имеет свойство быстро испаряться. Удобрение на азотной основе теряет часть своих первоначальных свойств именно при транспортировке.

Внесение азотного удобрения в грунт происходит довольно просто, но могут возникать также и потери азота, в результате процесса испарения свободного, безводного аммиака. Почвенные коллоиды мгновенно поглощают азот. Небольшая часть азотных удобрений, в результате вступления в реакцию с почвенной влагой, превращается в гидроокись аммония.

В грунтах, насыщенных , в несколько раз повышается эффективность азотного удобрения. В этом случае потери аммиака минимальные.

В супеси и песчаных, неустойчивых грунтах с минимальным насыщением гумуса, потери аммиака в несколько раз повышаются, соответственно, эффективность применения падает.

При наличии больших объемов земли, которые нуждаются в подкормке азотными удобрениями, существует специальная техника. При ее содействии удобрение вносится на глубину до 12 см. на легких грунтах. Это делается для минимизации потерь азота и повышения эффективности его действия. Поверхностное внесение в почву не даст никакого результата.

Удобрения, содержащие азот, также вносят в промерзшую почву осенью, или же при культивировании почвы перед проведением посевной кампании.

Аммиакаты. Производство аммиакатов проходит в результате смешивания водного аммиака и азотных удобрений. Полученный состав имеет около 30-50% азота. Он в аммиакатах находится в разных соединениях и пропорциях (нитратная и амидная форма)

Для садово-огородных культур аммиакаты в жидком состоянии по свойствам не уступают твердым видам азотных удобрений.

Осуществлять подпитку почвы жидкими удобрениями следует в специальной униформе, чтоб предотвратить попадания его на кожный покров и в дыхательные пути, а также на слизистые оболочки. Для защиты глаз необходимо использовать очки, а для защиты дыхания – маски или респираторы.

Виды азотных удобрений и способы их применения

Азот является одним из основных составляющих комплекса для подпитки растений. Его основной функцией в этом комплексе, есть увеличение плодоносности садово-огородных культур.

Что касается доз для внесения в почву, то для ягодных и плодовых культур норма 9-12 г./1м 2 почвы. Для культур, которые имеют внутри косточку, эти значения равны 4-6 гр./1м 2 грунта. При простой подкормке, для поддержки общего состояния плодов, применяется дозировка до 4 гр./1м 2 площади.

Основные виды азотных удобрений:

Азотные удобрения играют большую роль для хорошего развития садово-огородных культур. Главной задачей для дачника есть своевременное подкармливание растения этим видом удобрения. О том, как применять азотные удобрения, и в каких пропорциях подробно написано в инструкции на упаковках и в информационных источниках.

Применение азотных удобрений для плодовых деревьев (видео)

Французское название элемента (azote), которое прижилось и в русском языке, предложил в 18 в. Лавуазье , образовав его от греческой отрицательной приставки «а» и слова «зоэ» – жизнь (тот же корень в словах зоология и массе его производных – зоопарк, зоогеография и т.д.), т.е. «азот» означает «безжизненный», «не поддерживающий жизни». Того же происхождения и немецкое название этого элемента Stickstoff – удушливое вещество. Корень «азо» присутствует и в химических терминах «азид», «азосоединение», «азин» и др. А латинское nitrogenium и английское nitrogen происходят от древнееврейского «нетер» (греч. «нитрон», лат. nitrum); так в древности называли природную щелочь – соду, а позднее – селитру. Название «азот» не вполне удачное: хотя газообразный азот и не пригоден для дыхания, для жизни этот элемент совершенно необходим. В состав всех живых существ входит относительное небольшое число элементов и один из важнейших из них – азот, в белках – около 17% азота. Входит азот и в состав молекул ДНК и РНК, обеспечивающих наследственность.

Азота на Земле много, но основные его запасы сосредоточены в атмосфере. Однако из-за высокой прочности тройной связи NєN (942 кДж/моль, что почти в 4 раза больше энергии связи Cl–Cl) молекула азота очень прочная, а ее реакционная способность низка. В результате ни одно животное или растение не способны усвоить газообразный азот из воздуха. Откуда же они получают этот элемент, необходимый им для синтеза белков и других важнейших компонентов организма? Животные получают азот в результате поедания растений и других животных. Растения извлекают азот вместе с другими питательными веществами из почвы, и лишь немногие бобовые растения могут усваивать азот из воздуха – и то не сами, а благодаря клубеньковым бактериям, живущим на их корнях.

Основной источник азота в почве – биологическая азотофиксация, т.е связывание атмосферного азота и перевод его микроорганизмами в усвояемые растениями формы. Микроорганизмы могут жить в почве сами по себе, а могут находиться в симбиозе («содружестве») с некоторыми растениями, в основном, с бобовыми – клевером, горохом, фасолью, люцерной и др. Бактерии «поселяются» на корнях этих растений – в особых клубеньках; часто их так и называют – клубеньковые бактерии. В этих микроорганизмах содержится сложный фермент нитрогеназа, способный восстановить азот до аммиака. Затем с помощью других ферментных систем аммиак превращается в другие соединения азота, которые усваиваются растениями. Свободно живущие бактерии связывают до 50 кг азота в год в расчете на 1 га, а клубеньковые – еще 150 кг, а в особо благоприятных условиях – до 500 кг!

Второй источник природного азота в почве – это молнии . Ежесекундно на Земном шаре вспыхивает в среднем 100 молний. И хотя каждая из них длится всего доли секунды, их общая электрическая мощность достигает 4 млрд. киловатт. Резкое повышение температуры в канале молнии –до 20 000° С приводит к разрушению молекул азота и кислорода с образованием оксида азота NO. Далее он окисляется атмосферным кислородом в диоксид: 2NO + O 2  2NO 2 . Диоксид, реагируя при избытке кислорода с атмосферной влагой, превращается в азотную кислоту: 4NO 2 + 2H 2 O + O 2  4HNO 3 . В результате этих превращений в атмосфере ежедневно образуется примерно 2 млн. т азотной кислоты или более 700 млн т в год. Слабый раствор азотной кислота выпадает на землю с дождями. Это количество «небесной кислоты» интересно сравнить с ее промышленным производством; получение азотной кислоты – одно из самых крупнотоннажных производств. Оказывается, здесь человек далеко отстает от природы: мировое производство азотной кислоты составляет около 30 млн. т. За счет расщепления молекул азота молниями на каждый гектар земной поверхности, включая горы и пустыни, моря и океаны, ежегодно выпадает около 15 кг азотной кислоты. В почве эта кислота переходит в ее соли – нитраты, которые прекрасно усваиваются растениями.

Казалось бы, «грозовой азот» не так уж важен для посевов, однако клевер и другие бобовые покрывают лишь малую часть земной поверхности. Молнии же начали сверкать в атмосфере миллиарды лет назад, задолго до появления азотфиксирующих бактерий. Так что они сыграли заметную роль в связывании атмосферного азота. Например, только за последние два тысячелетия молнии перевели в удобрения 2 триллиона тонн азота – примерно 0,1% всего его количества в воздухе!

Либих против Мальтуса . В 1798 году английский экономист Томас Мальтус (1766–1834) издал свою знаменитую книгу Опыт о народонаселении . В ней он указал, что численность населения имеет тенденцию возрастать в геометрической прогрессии, т.е. как 1, 2, 4, 8, 16... В то же время средства к существованию за те же промежутки времени даже в самых благоприятных условиях могут расти только в арифметической прогрессии, т.е. как 1, 2, 3, 4... Например, по этой теории производство продуктов питания может расти лишь путем расширения сельскохозяйственных угодий, лучшей обработке пахотной земли и т.д. Из теории Мальтуса следовало, что в будущем человечеству грозит голод. В 1887 этот вывод подтвердил английский ученый Томас Гексли (1825–1897), друг Чарлза Дарвина и популяризатор его учения.

Чтобы избежать «голодной смерти» человечества, необходимо было резко увеличить производительность сельского хозяйства, а для этого надо было решить важнейший вопрос о питании растений. Вероятно, первый опыт в этом направлении провел в начале 1630-х один из крупнейших ученых своего времени, голландский врач и алхимик Ян Батист ван Гельмонт (1579–1644). Он решил проверить, откуда растения получают питательные вещества – из воды или из почвы. Ван Гельмонт взял 200 фунтов (ок. 80 кг) сухой земли, насыпал ее в большой горшок, посадил в землю ветку ивы и принялся усердно поливать ее дождевой водой. Ветка пустила корни и начала расти, превращаясь постепенно в деревце. Этот опыт продолжался ровно пять лет. Оказалось, что за это время растение прибавило в массе 164 фунта 3 унции (около 66 кг), тогда как земля «похудела» всего на 3 унции, т.е. меньше, чем на 100 г. Следовательно, сделал вывод Ван Гельмонт, растения берут питательные вещества только из воды.

Последующие исследования этот вывод как будто опровергли: ведь в воде нет углерода, который составляет основную массу растений! Отсюда следовало, что растения буквально «питаются воздухом», поглощая из него углекислый газ – тот самый, который как раз открыл Ван Гельмонт и даже назвал его «лесным воздухом». Такое название было дано газу вовсе не потому, что его много в лесах, а лишь благодаря тому, что он образуется при горении древесного угля...

Вопрос «воздушного питания» растений развил в конце 18 в. швейцарский ботаник и физиолог Жан Сенебье (1742–1809). Он экспериментально доказал, что в листьях растений происходит разложение углекислого газа, при этом кислород выделяется, а углерод остается в растении. Но некоторые ученые резко возражали против этой точки зрения, отстаивая «гумусовую теорию», согласно которой растения питаются в основном извлекаемыми из почвы органическими веществами. Это как будто подтверждала вековая практика ведения сельского хозяйства: почва, богатая перегноем, хорошо удобренная навозом, давала повышенные урожаи...

Однако теория гумуса не учитывала роль минеральных веществ, которые растениям совершенно необходимы. Эти вещества растения извлекают из почвы в большом количестве, и при уборке урожая они уносятся с полей. Впервые на это обстоятельство, а также на необходимость возвращать в почву минеральные вещества указал немецкий химик Юстус Либих . В 1840 он выпустил книгу Органическая химия в применении к земледелию и физиологии , в которой, в частности, писал: «Придет время, когда каждое поле, сообразно с растением, которое на нем будут разводить, будет удобряться свойственным удобрением, приготовленном на химических заводах».

Поначалу идеи Либиха были приняты в штыки. «Это самая бесстыдная книга из всех, которые когда-либо попадали мне в руки», – писал о ней профессор ботаники Тюбингенского университета Гуго Моль (1805–1872). «Совершенно бессмысленная книга», – вторил ему известный немецкий писатель Фриц Рейтер (1810–1874), занимавшийся некоторое время сельским хозяйством. Немецкие газеты начали помещать оскорбительные письма и карикатуры на Либиха и его теорию минерального питания растений. Частично виноват в этом был и сам Либих, который сначала ошибочно полагал, что минеральные удобрения должны содержать только калий и фосфор, тогда как третий необходимый компонент – азот – растения сами могут усваивать из воздуха.

Ошибка Либиха, вероятно, объяснялась неправильной интерпретацией опытов известного французского агрохимика Жана Батиста Буссенго (1802–1887). В 1838 он посадил взвешенные семена некоторых растений в почву, не содержащую азотных удобрений, а через 3 месяца взвесил ростки. У пшеницы и овса масса практически не изменилась, тогда как у клевера и гороха она значительно увеличилась (у гороха, например, с 47 до 100 мг). Отсюда был сделан неверный вывод о том, что некоторые растения могут усваивать азот прямо из воздуха. О клубеньковых бактериях, живущих на корнях бобовых и улавливающих атмосферный азот, в то время ничего не знали. В результате первые попытки применить лишь калийно-фосфорные удобрения повсеместно дали отрицательный результат. У Либиха хватило мужества открыто признать свою ошибку. Его теория в конце концов победила. Результатом было введение в сельское хозяйство со второй половины 19 в. химических удобрений и строительство заводов по их производству.

Азотный кризис.

С фосфорными и калийными удобрениями особых проблем не было: в недрах земли соединения калия и фосфора содержатся в изобилии. Совершенно иначе дело обстояло с азотом: с интенсификацией сельского хозяйства, которое должно было прокормить быстро растущее население Земли, естественные источники перестали справляться с пополнением запасов азота в почве. Возникла настоятельная потребность изыскать источники «связанного» азота. Химики умели синтезировать некоторые соединения, например, нитрид лития Li 3 N, исходя из атмосферного азота. Но так можно было получить граммы, в лучшем случае – килограммы вещества, тогда как требовались миллионы тонн!

В течение многих веков практически единственным источником связанного азота была селитра. Это слово происходит от латинских sal – соль и nitrum, дословно – «щелочная соль»: в те времена состав веществ был неизвестен. В настоящее время селитрой называют некоторые соли азотной кислоты – нитраты. С селитрой связаны несколько драматических вех в истории человечества. С древних времен была известна только так называемая индийская селитра – нитрат калия KNO 3 . Этот редкий минерал привозили из Индии, тогда как в Европе природных источников селитры не было. Индийскую селитру использовали исключительно для производства пороха. Пороха с каждым столетием требовалось все больше, а привозной селитры не хватало, и была она очень дорога.

Со временем селитру научились получать в специальных «селитряницах» из различных органических остатков, которые содержат азот. Довольно много азота, например, в белках. Если сухие остатки просто сжечь, содержащийся в них азот в основном окислится до газообразного N 2 . Но если они подвергаются гниению, то под действием нитрифицирующих бактерий азот переходит в нитраты, которые и выщелачивали в старину в специальных кучах – буртах, а селитру называли буртовой. Делали это так. Смешивали различные органические отходы – навоз, внутренности животных, ил, болотную жижу и т.п. Туда же добавляли мусор, известь, золу. Эту жуткую смесь засыпали в ямы или делали из нее кучи и обильно поливали мочой или навозной жижей. Можно представить себе, какой запах шел от этого производства! За счет процессов разложения в течение одного – двух лет из 6 кг «селитряной земли» получали 1 кг селитры, которую очищали от примесей. Больше всего селитры получали во Франции: правительство щедро награждало тех, кто занимался этим неприятным производством.

Благодаря стараниям Либиха стало очевидным, что селитра потребуется сельскому хозяйству, причем в значительно больших количествах, чем для производства пороха. Старый способ ее получения для этого совершенно не годился.

Чилийская селитра.

С 1830 началась разработка залежей чилийской селитры – богатейшего природного источника азота. В Чили есть огромные пространства, в которых никогда не бывает дождей, например, пустыня Атакама, расположенная в предгорьях Кордильер на высоте около 1000 м над уровнем моря. В результате тысячелетних процессов разложения растительных и животных органических остатков (в основном птичьего помета – гуано) в Атакаме образовались уникальные залежи селитры. Они расположены в 40–50 км от берега океана. Когда эти залежи начали разрабатывать, они тянулись полосой длиной около 200 км и шириной 3 км при толщине пласта от 30 см до 3 м. В котловинах пласты значительно утолщались и напоминали высохшие озера. Как показали анализы, чилийская селитра – это нитрат натрия с примесями сульфата и хлорида натрия, глины и песка; иногда в селитре находят неразложившиеся остатки гуано. Интересной особенностью чилийской селитры является присутствие в ней иодата натрия NaIO 3 .

Обычно порода была мягкая и легко извлекалась из земли, но иногда залежи селитры были такими плотными, что для их извлечения требовались взрывные работы. После растворения породы в горячей воде раствор фильтровали и охлаждали. При этом в осадок выпадал чистый нитрат натрия, который шел на продажу в виде удобрения. Из оставшегося раствора добывали иод. В 19 в. Чили стало главным поставщиком селитры. Разработка месторождений занимала первое место в горнодобывающей промышленности Чили 19 в.

Чтобы получить из чилийской селитры нитрат калия, использовали реакцию NaNO 3 + KCl ® NaCl + KNO 3 . Такая реакция возможна благодаря резкому различию в растворимости ее продуктов при разных температурах. Растворимость NaCl (в граммах на 100 г воды) изменяется лишь с 39,8 г при 100° С до 35,7 г при 0° С, тогда как растворимость KNO 3 при тех же температурах отличается очень сильно и составляет 246 и 13,3 г! Поэтому если смешать горячие концентрированные растворы NaNO 3 и KCl, а затем охладить смесь, то значительная часть KNO 3 выпадет в осадок, а почти весь NaCl останется в растворе.

В течение десятков лет чилийская селитра – природный нитрат натрия удовлетворял потребности человека. Но как только выявилось уникальное значение этого минерала для мирового сельского хозяйства, стали подсчитывать, на сколько же хватит человечеству этого уникального дара природы. Первые подсчеты были довольно оптимистическими – в 1885 запас селитры определялся в 90 млн. т. Получалось, что можно не беспокоиться об «азотном голодании» растений еще много лет. Но эти расчеты не учитывали быстрый рост населения и темпов сельскохозяйственного производства во всем мире.

Во времена Мальтуса экспорт чилийской селитры составлял всего 1000 т в год; в 1887 он достиг 500 тыс. т в год, а в начале 20 в. исчислялся уже миллионами тонн! Запасы чилийской селитры быстро истощались, тогда как потребность в нитратах росла исключительно быстро. Положение усугублялось тем, что селитру в больших количествах потребляла и военная промышленность; порох конца 19 в. содержал 74–75% калиевой селитры. Требовалось разработать новые методы получения азотных удобрений, причем их источником мог быть только атмосферный воздух.

Преодоление «азотного голода».

В начале 20 в. для промышленного связывания азота был предложен цианамидный метод. Сначала накаливанием смеси извести и угля получали карбид кальция: СаО + 3С ® СаС 2 + СО. При высокой температуре карбид реагирует с азотом воздуха с образованием цианамида кальция: CaC 2 + N 2 ® CaCN 2 + C. Это соединение оказалось годным в качестве удобрения не для всех культур, поэтому из него действием перегретого водяного пара стали получать сначала аммиак: CaCN 2 + 3H 2 O ® CaCO 3 + 2NH 3 , а из аммиака и серной кислоты получали уже сульфат аммония.

Совершенно другим способом пошли норвежские химики, которые использовали дешевую местную электроэнергию (в Норвегии много гидроэлектростанций). Они фактически воспроизвели природный процесс связывания азота, пропуская влажный воздух через электрическую дугу. При этом из воздуха получалось около 1% азотной кислоты, которую взаимодействием с известью переводили в нитрат кальция Ca(NO 3) 2 . Не удивительно, что это вещество назвали норвежской селитрой.

Однако оба метода были слишком дороги. Наиболее экономичный метод связывания азота разработал в 1907–1909 немецкий химик Фриц Габер (1868–1934); по этому методу азот превращается непосредственно в аммиак; превратить аммиак в нитраты и другие соединения азота было уже несложно.

В настоящее время производство азотных удобрений исчисляется десятками миллионов тонн в год. В зависимости от химического состава они бывают разных типов. Аммиачные и аммонийные удобрения содержат азот в степени окисления –3. Это жидкий аммиак, его водный раствор (аммиачная вода), сульфат аммония. Ионы NH 4 + под действием нитрифицирующих бактерий окисляются в почве в нитрат-ионы, которые хорошо усваиваются растениями. К нитратным удобрениям относятся KNO 3 и Ca(NO 3) 2 . К аммонийно-нитратным удобрениям относится прежде всего аммиачная селитра NH 4 NO 3 , содержащая одновременно аммиачный и нитратный азот. Самое концентрированное твердое азотное удобрение – карбамид (мочевина), содержащее 46% азота. Доля же природной селитры в мировом производстве азотсодержащих соединений не превышает 1%.

Применение.

Выведение новых сортов растений, в том числе и генетически модифицированных, усовершенствованные приемы агротехники не отменяют необходимости применения искусственных удобрений. Ведь с каждым урожаем поля теряют значительную долю питательных веществ, в том числе и азота. По данным многолетних наблюдений каждая тонна азота в азотных удобрениях дает прибавку урожая пшеницы на 12–25%, свеклы – на 120–160%, картофеля – на 120%. В нашей стране за последние полвека производство азотных удобрений наneазотно-туковых заводах увеличилось в десятки раз.

Илья Леенсонne

Загрузка...