domvpavlino.ru

Как посчитать общую площадь радиатора к транзистору. Простой расчет площади теплоотвода для мощных транзисторов и тиристоров. Самые простые способы расчета

Нередко, проектируя мощное устройство на силовых транзисторах, или прибегая к использованию в схеме мощного выпрямителя, мы сталкиваемся с ситуацией, когда необходимо рассеивать очень много тепловой мощности, измеряемой единицами, а иногда и десятками ватт.

К примеру IGBT-транзистор FGA25N120ANTD от Fairchild Semiconductor, если его правильно смонтировать, теоретически способен отдать через свой корпус порядка 300 ватт тепловой мощности при температуре корпуса в 25 °C! А если температура его корпуса будет 100 °C, то транзистор сможет отдавать 120 ватт, что тоже совсем немало. Но для того чтобы корпус транзистора в принципе смог отдать это тепло, необходимо обеспечить ему надлежащие рабочие условия, чтобы он раньше времени не сгорел.

Все силовые ключи выпускаются в таких корпусах, которые можно легко установить на внешний теплоотвод - радиатор. При этом в большинстве случаев металлическая поверхность ключа или другого устройства в выводном корпусе, электрически соединена с одним из выводов данного устройства, например с коллектором или со стоком транзистора.

Так вот, задача радиатора как раз и состоит в том, чтобы удержать транзистор, и главным образом его рабочие переходы, при температуре, не превышающей максимально допустимую.

Андрей Повный

Приведена методика, на примере процессора Intel Pentium4 Willamette 1.9 ГГц и кулера B66-1A производства компании ADDACorporation, описывающая порядок расчета ребристых радиаторов, предназначенных для охлаждения тепловыделяющих элементов РЭА с принудительной конвекцией и плоскими поверхностями теплового контакта мощностью до 100 Вт. Методика позволяет произвести практический расчет современных высокоэффективных малогабаритных устройств для отвода тепла и применить их ко всему спектру устройств радиоэлектроники нуждающихся в охлаждении.

Параметры, задаваемые в исходных данных:

P = 67 Вт, мощность выделяемая охлаждаемым элементом;

q с = 296 °К, температура среды (воздуха) в градусах Кельвина;

q пред = 348 °К, предельная температура кристалла;

q р = nn °K , средняя температура основания радиатора (вычисляется в процессе расчета);

H = 3 10 -2 м, высота ребра радиатора в метрах;

d = 0,8 10 -3 м, толщина ребра в метрах;

b = 1,5 10 -3 м, расстояние между ребрами;

l м = 380 Вт/(м °К), коэффициент теплопроводности материала радиатора;

L =8,3 10 -2 м, размер радиатора вдоль ребра в метрах;

B = 6,9 10 -2 м, размер радиатора поперек ребер;

А = 8 10 -3 м, толщина основания радиатора;

V ³ 2 м/сек, скорость воздуха в каналах радиатора;

Z = 27, число ребер радиатора;

u р = nn K , температура перегрева основания радиатора, вычисляется в процессе расчета;

e р = 0,7, степень черноты радиатора.

Предполагается, что источник тепла расположен по центру радиатора.

Все линейные размеры измеряются в метрах, температура в градусах Кельвина, мощность в ваттах, а время в секундах.

Конструкция радиатора и необходимые для расчетов параметры показана на Рис.1.

Рисунок 1.

Порядок расчета.

1. Определяем суммарную площадь сечения каналов между ребрами по формуле:

S к = (Z - 1)·b · H

Для принятых исходных данных - S к = (Z - 1)·b ·H = (27-1) ·1,5 10 -3 ·3 10 -2 = 1,1 10 -3 м 2

Для центральной установки вентилятора, воздушный поток выходит через две торцевые поверхности и площадь сечения каналов удваивается и равняется 2,2 10 -3 м 2 .

2. Задаемся двумя значениями температуры основания радиатора и проводим расчет для каждого значения:

q р = { 353 (+80°С) и 313 (+40°С)}

Отсюда определяется температура перегрева основания радиатора u р относительно окружающей среды.

u р = q р - q с

Для первой точки u р = 57°К, для второй u р = 17°К.

3. Определяем температуру q , необходимую для расчета критериев Нуссельта (Nu ) и Рейнольдса (Re ):

q = q с + P / (2 · V · S к · r · C р)

где: q с температура окружающего воздуха, среды,

V – скорость воздуха в каналах между ребрами, в м/сек;

S к – суммарная площадь поперечного сечения каналов между ребрами,в м 2 ;

r - плотность воздуха при температуре q ср, в кг/м 3 ,

q ср = 0,5 (q р + q с) ;

C р – теплоемкость воздуха при температуре q ср, в Дж/(кг х °К);

P – мощность отводимая радиатором.

Для принятых исходных данных - q = q с + P /(2·V ·S к ·r ·C р) = 296 К+67/(2·2м/сек·1,1 10 -3 м 2 ·1,21·1005) = 302,3°К (29,3°С)

* Величина, для данного ребристого радиатора с центральной установкой вентилятора, V из расчетов 1,5 - 2,5 м/сек (См. Приложение 2), из публикаций [Л.3] около 2 м/сек. Для коротких, расширяющихся каналов, как например у кулера Golden Orb скорость охлаждающегося воздуха может достигать 5 м/сек.

4. Определяем величины критериев Рейнольдса и Нуссельта, необходимые для расчета коэффициента теплоотдачи ребер радиатора:

Re = V ·L /n

где: n - коэффициент кинематической вязкости воздуха приq с, м 2 из Приложения1, таблица 1.

Для принятых исходных данных - Re = VL/ n = 2·8,3 10 -2 / 15,8 10 -6 = 1,05 10 4

Nu = 0,032 Re 0,8

Для принятых исходных данных - Nu = 0,032 Re 0,8 = 0,032 (2,62 10 4) 0,8 = 52,8

5. Определяем коэффициент конвективного теплообмена ребер радиатора:

a к = Nu · l в / L Вт / (м 2 К)

где, l - коэффициент теплопроводности воздуха (Вт/(м град)), при q с из Приложения 1, таблица1.

Для принятых исходных данных - a к = Nu· l в / L = 52,8 · 2,72 10 -2 / 8,3 10 -2 = 17,3

6. Определяем вспомогательные коэффициенты:

m = (2 · a к / l м · d ) 1/2

определяем значение mh и тангенса гиперболического th (mh ).

Для принятых исходных данных - m = (2 · a к / l м · d ) 1/2 = (2 · 17,3 /(380 · 0,8 10 -3)) 1/2 = 10,6

Для принятых исходных данных - m·H = 10,6 · 3 10 -2 = 0,32; th (m·H ) = 0,31

7. Определяем количество тепла, отдаваемое конвекцией с ребер радиатора:

P рк = Z · l м · m · S р · u р · th(m·H)

где: Z – число ребер;

l м = коэффициент теплопроводности металла радиатора, Вт/(м · °К);

m – см. формулу 7;

S р – площадь поперечного сечения ребра радиатора, м 2 ,

S р = L · d

u р – температура перегрева основания радиатора.

S р = L · d = 8,3 10 -2 · 0,8 10 -3 = 6,6 10 -5 м 2

P рк = Z · l м · m · S р · u р · th (m ·H ) = 27 · 380 · 10,6 · 6,6 10 -5 · 57 · 0,31 = 127 Вт.

8. Определяем среднюю температуру ребра радиатора:

q ср = (q р /2) [ 1 + 1 / ch (m ·H )]

где: ch (mH ) – косинус гиперболический.

Для принятых исходных данных - q ср = (q р /2) [ 1 + 1 / ch (m ·H )] = (353/2) =344°K (71°С)

*Величина тангенса и косинуса гиперболических вычисляется на инженерном калькуляторе путем последовательного выполнения операций “hyp ” и “tg ” или ”cos ”.

9. Определяем лучистый коэффициент теплообмена:

a л = e р · f (q ср, q с) · j

f (q ср, q с) = 0,23 [ 5 10 -3 (q ср + q с)] 3

Для принятых исходных данных - f (q ср, q с) = 0,23 [ 5 10 -3 (q ср + q с)] 3 = 0,23 3 = 7,54

Коэффициент облученности:

j = b / (b + 2h )

j = b / (b + 2H ) = 1,5 10 -3 / (1,5 10 -3 + 3 10 -2) = 0,048

a л = e р f (q ср, q с) j = 0,7 х 7,54 х 0,048 = 0,25 Вт/м 2 К

10. Определяем площадь поверхности излучающей тепловой поток:

S л = 2 L [ (Z -1) · (b + d ) + d ] +2 H · L · Z (м 2)

Для принятых исходных данных - S л = 2 L [(Z -1) · (b + d ) + d ] +2 H · L · Z = 0,1445 м 2

11. Определяем количество тепла отдаваемое через излучение:

P л = a л · S л (q ср - q с)

Для принятых исходных данных - P л = a л S л (q ср - q с) = 0,25 · 0,1445 · (344 – 296) = 1,73 Вт

12. Общее количество тепла отдаваемое радиатором при заданной температуре радиатора q р = 353К:

P = P рк + P л

Для принятых исходных данных - P = P рк + P л = 127 + 1,73 = 128,7 Вт.

13. Повторяем вычисления для температуры радиатора q р = 313К, и строим по двум точкам тепловую характеристику рассчитанного радиатора. Для этой точки Р=38Вт. Здесь по вертикальной оси откладывается количество тепла отдаваемое радиатором P р , а по горизонтальной температура радиатора q р .

Рисунок 2

Из полученного графика определяем для заданной мощности 67Вт, q р = 328 °К или 55°С.

14. По тепловой характеристике радиатора определяем что при заданной мощности P р =67Вт, температура радиатора q р =328,5°С. Температуру перегрева радиатора u р можно определяем по формуле 2.

Она равна u р = q р - q с = 328 – 296 = 32°К.

15. Определяем температуру кристалла и сравниваем её с предельным значением установленным производителем

q к = q р + Р (r пк + r пр) °К = 328+67(0,003+0,1)=335 (62°С),

q р температура основания радиатора для данной расчетной точки,

Р – результат вычисления по формуле 14,

r пк - тепловое сопротивление корпус процессора - кристалл, для данного теплового источника равна 0,003 К/Вт

r пр – тепловое сопротивление корпус-радиатор, для данного теплового источника равна 0,1К/Вт (с теплопроводящей пастой).

Полученный результат ниже определенной производителем предельной температуры, и близко данным [Л.2] (порядка 57°С). При этом температура перегрева кристалла относительно окружающего воздуха в приведенных расчетах 32°С, а в [Л.2] 34°С.

В общем виде, тепловое сопротивление между двумя плоскими поверхностями при применении припоев, паст и клеев:

r = d к · l к -1 · S конт -1

где: d к – толщина зазора между радиатором и корпусом охлаждаемого узла, заполненного теплопроводящим материалом в м,

l к – коэффициент теплопроводности теплопроводящего материала в зазоре Вт/(м К),

S конт – площадь контактной поверхности в м 2 .

Приближенное значение r кр при достаточной затяжке и без прокладок и смазок равно

r кр = 2,2 / S конт

При применении паст, тепловое сопротивление падает примерно в 2 раза.

16. Сравниваем q к с q пред , мы получили радиатор обеспечивающий q к = 325°K , меньше q пред = 348°К, - заданный радиатор обеспечивает с запасом тепловой режим узла.

17. Определяем тепловое сопротивление рассчитанного радиатора:

r = u р / P (°К/Вт)

r = u р / P (°/Вт) = 32/67 = 0,47°/Вт

Выводы:

Рассчитанный теплообменник обеспечивает отвод тепловой мощности 67Вт при температуре окружающего воздуха до 23°С, при этом температура кристалла 325 °К (62°С) не превышает допустимую для данного процессора 348°К (75°С).

Применение специальной обработки поверхности для увеличения отдачи тепловой мощности через излучение на температурах до 50°С оказалось неэффективно и не может быть рекомендовано, т.к. не окупает затрат.

Хотелось бы, чтобы данный материал помог Вам не только рассчитать и изготовить современный малогабаритный высокоэффективный теплообменник, подобный тем, что широко применяются в компьютерной технике, но и грамотно принимать решения по применению подобных устройств, применительно к Вашим задачам.

Приложение 1.

Константы для расчета теплообменника.

Таблица 1

q с, К (°С) l *10 -2
Вт/(м К)
n * 10 6 м 2 /сек Ср Дж/(кг*К) r , кг/м 2
273 (0)td> 2,44 13,3 1005 1,29
293 (20) 2,59 15,1 1005 1,21
373 (100) 3,21 23,1 1009 0,95

Значения констант для промежуточных значений температур, в первом приближении, можно получить построив графики функций для указанных в первом столбце температур.

Приложение 2.
Расчет скорости движения воздуха охлаждающего радиатор.

Скорость движения теплоносителя при вынужденной конвекции в газах:

V = Gv /S к

Где: Gv – объемный расход теплоносителя, (для вентилятора 70х70, S пр = 30 см 2 , 7 лопастей, P эм = 2,3Вт, w = 3500 об/мин, Gv = 0,6-0,8 м 3 /мин. или реально 0,2-0,3 или V = 2м/сек),

S к – свободная для прохода площадь поперечного сечения канала.

Учитывая, что площадь проходного сечения вентилятора 30 см 2 , а площадь каналов радиатора 22 см 2 , скорость продувки воздуха определяется меньшим, и будет равна:

V = Gv /S = 0,3 м 3 /мин / 2,2 10 -3 м 2 =136 м/мин = 2,2 м/сек.

Для расчетов принимаем, 2 м/сек.

Литература:

    Справочник конструктора РЭА, под ред.. Р.Г.Варламова, М, Советское радио, 1972;

    Справочник конструктора РЭА, под ред.. Р.Г.Варламова, М, Советское радио, 1980;

    http://www.ixbt.com/cpu/ , Кулеры для Socket 478, сезон весна-лето 2002, Виталий Криницин , Опубликовано - 29 июля 2002 г;

    http://www.ixbt.com/cpu/ , Измерение скоростей воздуха за охлаждающими вентиляторами и кулерами, Александр Цикулин, Алексей Рамейкин, Опубликовано - 30 августа 2002 г.

Подготовил в 2003 году по материалам Л.1 и 2

Радиаторы для полупроводниковых приборов

Во время работы мощные полупроводниковые приборы выделяют в окружающую среду определенную теплоту. Если не позаботиться об их охлаждении, транзисторы и диоды могут выйти из строя из-за перегрева рабочего кристалла. Обеспечение нормального теплового режима транзисторов (и диодов) - одна из важных задач. Для правильного решения этой задачи нужно иметь представление о работе радиатора и технически грамотном его конструировании.

Как известно, любой нагретый предмет охлаждаясь отдает тепло окружающей среде. Пока количество тепла, выделяющегося в транзисторе, больше отдаваемого им среде - температура корпуса транзистора будет непрерывно возрастать. При некотором ее значении наступает так называемый тепловой баланс, то есть равенство количеств рассеиваемого и выделяемого тепла. Если температура теплового баланса меньше максимально допустимой для транзистора - он будет надежно работать. Если эта температура выше допустимой максимальной температуры - транзистор выйдет из строя. Для того, чтобы тепловой баланс наступал при более низкой температуре, необходимо увеличить теплоотдачу транзистора.

Известны три способа передачи тепла: Теплопроводность, Лучеиспускание и Конвекция. Теплопроводность воздуха обычно мала - этим значением при расчете радиатора можно пренебречь. Доля тепла, рассеиваемая лучеиспусканием значительна лишь при высоких температурах (несколько сотен градусов по Цельсию), поэтому этой величиной при относительно низких температурах работы транзисторов (не более 60-80 градусов) также можно пренебречь. Конвекция - это движение воздуха в зоне нагретого тела, обусловленное разностью температур воздуха и тела. Количество тепла, отдаваемого нагретым предметом, пропорционально разности температур предмета и воздуха, площади поверхности и скорости воздушного потока, омывающего тело.

В молодости я столкнулся с оригинальным решением отвода тепла от мощных выходных транзисторов. Транзисторы (тогда для построения усилителей применяли транзисторы типа П210) на длинных проводах находились вне корпуса. К корпусу были прикручены две пластиковые баночки с водой, а транзисторы лежали в них. Таким образом было обеспечено "водяное" эффективное охлаждение. Когда вода в баночках нагревалась - ее просто заменяли на холодную... Вместо воды можно использовать минеральное (жидкое) или трансформаторное масло... Сейчас промышленность начала серийно выпускать водяные системы охлаждения процессоров и видеокарт компьютеров - по принципу автомобильных радиаторов (но это - уже, на мой взгляд, экзотика...).

Для обеспечения эффективного отвода тепла от кристалла полупроводника применяют теплоотводы (радиаторы). Познакомимся с некоторыми из конструкций радиаторов.

На приведенных рисунках показаны четыре разновидности теплоотводов.

Простейшим из них является пластинчатый радиатор. Площадь его поверхности равна сумме площадей двух сторон. Идеальной формой такого теплоотвода является круг, далее идут квадрат и прямоугольник. Пластинчатый радиатор целесообразно применять при небольших мощностях рассеивания. Устанавливаться такой радиатор должен вертикально, в противном случае - эффективная площадь рассеяния снижается.

Усовершенствованный пластинчатый теплоотвод представляет собой набор из нескольких пластин, загнутых в разные стороны. Этот радиатор при площади поверхности равной простейшему пластинчатому имеет меньшие габариты. Устанавливается такой теплоотвод аналогично пластинчатому. Количество пластин может быть различным - в зависимости от необходимой поверхности. Площадь рассеивания такого радиатора равна сумме площадей всех загнутых участков пластин, плюс площадь поверхности центральной части. Это тип радиатора имеет и недостатки: пониженную эффективность отвода тепла от всех пластин, а также невозможность получения идеально прямой поверхности в местах соединения пластин между собой.

Для изготовления пластинчатых радиаторов следует использовать пластины с толщиной не менее 1,5 (лучше - 3) миллиметров.

Ребристый радиатор - обычно цельнолитой, либо фрезерованный - может быть с одно или двухсторонним оребрением. Двухстороннее оребрение позволяет увеличить площадь поверхности. Площадь поверхности такого теплоотвода равна сумме площадей поверхности всех пластин и сумме площади поверхности основного тела радиатора.

Самым эффективным из всех перечисленных является штыревой (или игольчатый) радиатор. При минимальном объеме такой радиатор имеет максимальную эффективную площадь рассеивания. Площадь поверхности такого теплоотвода равна сумме площадей каждого штырька и площади основного тела.

Также существуют теплоотводы с принудительной подачей воздуха (пример - кулер процессора в вашем компьютере). Эти теплоотводы при небольшой площади поверхности радиатора способны рассеивать в окружающую среду значительные мощности (к примеру - процессор среднего быстродействия Р-1000 выделяет, в зависимости от загрузки 30-70 ватт тепловой энергии). Недостаток таких теплоотводов - повышенный шум при эксплуатации и ограниченный срок работы (механический износ вентилятора).

Материалом для радиаторов обычно служит алюминий и его сплавы. Лучшей эффективностью обладают теплоотводы, выполненные из меди, но вес и стоимость таких радиаторов выше, чем у алюминиевых.

Полупроводниковый прибор крепится на теплоотвод при помощи специальных фланцев. Если необходимо изолировать прибор от радиатора - применяются различные изоляционные прокладки. Применение прокладок снижает эффективность передачи тепла от кристалла, поэтому, если есть возможность - лучше изолировать теплоотвод от шасси конструкции. Для более эффективного отвода тепла поверхность, которая соприкасается с полупроводниковым прибором, должна быть ровной и гладкой. Для повышения эффективности применяют специальные термопасты (например "КПТ-8"). Применение термопаст способствует уменьшению теплового сопротивления участка "корпус - теплоотвод" и позволяет несколько понизить температуру кристалла. В качестве прокладок используют слюду, различные пленки из пластмассы, керамику. В свое время мной было получено авторское свидетельство по способу изолирования корпуса транзистора от теплоотвода. Суть данного метода заключается в следующем: Поверхность теплоотвода покрывается тонким слоем термопасты (например типа КПТ-8), на поверхность пасты наносится (методом насыпания) слой кварцевого песка (я использовал песок из плавкого предохранителя), далее излишек песка удаляется стряхиванием и транзистор плотно прижимается при помощи хомута, изготовленного из изоляционного материала. При заводских испытаниях данного метода "прокладка" выдерживала кратковременно подачу напряжения в 1000 вольт (от мегометра).

Некоторые зарубежные мощные транзисторы выпускаются в изолированном корпусе - такой транзистор можно крепить непосредственно к теплоотводу без применения каких либо прокладок (но это не исключает применения термопаст!).

Источником тепла в системе транзистор-радиатор-окружающая среда является коллекторный P-N переход. Весь путь тепла в этой системе можно разделить на три участка: переход - корпус транзистора, корпус транзистора - теплоотвод, теплоотвод - окружающая среда. Вследствие неидеальности передачи тепла температуры перехода, корпуса транзистора и окружающей среды существенно отличаются. Это происходит потому, что тепло на своем пути встречает некоторое сопротивление, называемое тепловым сопротивлением. Это сопротивление равно отношению разности температур на границах участка к рассеиваемой мощности. Сказанное можно проиллюстрировать примером: по справочнику тепловое сопротивление переход-корпус транзистора П214 равно 4 градуса Цельсия на ватт. Это означает, что в случае рассеивания на переходе мощности в 10 ватт, переход будет "теплее" корпуса на 4*10=40 градусов! Если учесть при этом тот факт, что максимальная температура перехода равна 85 градусам, то станет ясно, что температура корпуса при указанной мощности не должна превышать 85-40= 45 градусов Цельсия. Наличие теплового сопротивления радиатора является причиной существенного различия температуры его участков, разноудаленных от места установки транзистора. Это означает, что в активной отдаче тепла участвует не вся поверхность радиатора, а лишь часть ее, которая имеет наиболее высокую температуру и поэтому наилучшим образом омывается воздухом. Эта часть и называется эффективной поверхностью радиатора. Она будет тем больше, чем выше теплопроводящая способность радиатора. Теплопроводящая способность радиатора зависит от свойств материала из которого изготовлен теплоотвод и его толщины. Вот поэтому для изготовления теплоотводов используют медь или алюминий.

Полный расчет радиатора - очень трудоемкий процесс. Для грубого расчета можно использовать следующие данные: Для рассеивания 1 ватта тепла, выделяемого полупроводниковым прибором, достаточно использовать площадь теплоотвода, равную 30 квадратным сантиметрам.

Обозначение диода

Макс. темпер.

окр. среды

Площадь радиатора

КД202А,КД202В

БЕЗ РАДИАТОРА

КД202Д,КД202Ж

КД202К,КД202М

КД202Б,КД202Г

КД202Е,КД202И

КД202Л,КД202Н


В журнале "Радиоаматор-Конструктор" была опубликована статья неизвестного автора по методике упрощенного расчета радиаторов. .

Литература

Один из наиболее важных вопросов создания комфортных условий проживания в доме или квартире – это надежная , правильно рассчитанная и смонтированная, хорошо сбалансированная система отопления. Именно поэтому создание такой системы – главнейшая задача при организации строительства собственного дома или при проведении капитального ремонта в квартире многоэтажки.

Несмотря на современное разнообразие систем отопления различных типов, лидером по по пулярности все же остается проверенная схема: контуры труб с циркулирующим по ним теплоносителем, и приборы теплообмена – радиаторы, установленные в помещениях. Казалось бы – все просто , батареи стоят под окнами и обеспечивают т ребуемый нагрев… Однако, необходимо знать, что теплоотдача от радиаторов должна соответствовать и площади помещения, и целому ряду других специфических критериев. Теплотехнические расчеты , основанные на требованиях СНиП – достаточно сложная процедура, выполняемая специалистами. Тем не менее , можно выполнить ее и своими силами, естественно, с допустимым упрощением. В настоящей публикации будет рассказано, как самостоятельно провести расчет батарей отопления на площадь обогреваемого помещения с учетом различных нюансов.

Но, для начала, нужно хотя бы бегло ознакомиться с существующими радиаторами отопления – от их параметров во многом будут зависеть и результаты проводимых расчетов .

Кратко о существующих типах радиаторов отопления

  • Стальные радиаторы панельной или трубчатой конструкции.
  • Чугунные батареи.
  • Алюминиевые радиаторы нескольких модификаций.
  • Биметаллические радиаторы.

Стальные радиаторы

Этот тип радиаторов не снискал себе особой популярности, несмотря на то, что некоторым моделям придается весьма элегантное дизайнерское оформление. Проблема в том, что недостатки таких приборов теплообмена существенно превышают их достоинства – невысокую цену¸ относительно небольшую массу и простоту монтажа.

Тонкие стальные стенки таких радиаторов недостаточно теплоёмки – быстро нагреваются, но и столь же стремительно остывают. Могут возникнуть проблемы и при гидравлических ударах – сварные соединения листов иногда дают при этом течь . Кроме того, недорогие модели, не имеющие специального покрытия, подвержены коррозии, и срок службы таких батарей невелик – обычно производители дают им довольно небольшую по длительности эксплуатации гарантию.

В подавляющем большинстве случаев стальные радиаторы представляют собой цельную конструкцию, и варьировать теплоотдачу изменением числа секций не позволяют. Они имеют паспортную тепловую мощность, которую сразу же нужно выбирать, исходя из площади и особенностей помещения, где они планируются к установке. Исключение – некоторые трубчатые радиаторы имеют возможность изменения количества секций, но это обычно делается под заказ, при изготовлении, а не в домашних условиях.

Чугунные радиаторы

Представители этого типа батарей наверняка знакомы каждому еще с раннего детства – именно такие гармошки устанавливались ранее буквально повсеместно .

Возможно, такие батареи МС -140— 500 и не отличались особым изяществом, но зато верно служили не одному поколению жильцов. Каждая секция подобного радиатора обеспечивала теплоотдачу в 160 Вт. Радиатор сборный, и количество секций, в принципе, ничем не ограничивалось.

В настоящее время в продаже немало современных чугунных радиаторов. Их уже отличает более элегантный внешний вид, ровные гладкие наружные поверхности, которые облегчают уборку. Выпускаются и эксклюзивные варианты, с интересным рельефным рисунком чугунного литься.

При всем этом, такие модели в полной мере сохраняют основные достоинства чугунных батарей:

  • Высокая теплоемкость чугуна и массивность батарей способствуют длительному сохранению и высокой отдаче тепла.
  • Чугунные батареи, при правильной сборке и качественном уплотнении соединений, не боятся гидроударов, перепадов температур.
  • Толстые чугунные стенки мало восприимчивы к коррозии и к абразивному износу.Может использоваться практически любой теплоноситель, так что такие батареи одинаково хороши и для автономной, и для центральной систем отопления.

Если не принимать в расчёт внешние данные старых чугунных батарей, то из недостатков можно отметить хрупкость металла (недопустимы акцентированные удары), относительную сложность монтажа, связанную в больше мере с массивностью. Кроме того, далеко не любые стеновые перегородки смогут выдержать вес таких радиаторов.

Алюминиевые радиаторы

Алюминиевые радиаторы, появившись сравнительно недавно, очень быстро завоевали популярность. Они относительно недороги, имеют современный, достаточно элегантный внешний вид, обладают отменной теплоотдачей.

Качественные алюминиевые батареи способны выдерживать давление в 15 и более атмосфер, высокую температуру теплоносителя – порядка 100 градусов. При этом тепловая отдача от одной секции у некоторых моделей достигает порой 200 Вт. Но при этом они небольшой массой (вес секции – обычно до 2 кг) и не требуют большого объема теплоносителя (емкость – не более 500 мл).

Алюминиевые радиаторы представлены в продаже как наборными батареями, с возможностью изменения количества секций, так и цельными изделиями, рассчитанными на определенную мощность.

Недостатки алюминиевых радиаторов:

  • Некоторые типы весьма подвержены кислородной коррозии алюминия, с высоким риском газообразования при этом. Это предъявляет особы требования к качеству теплоносителя, поэтому такие батареи обычно устанавливают в автономных системах отопления.
  • Некоторые алюминиевые радиаторы неразборной конструкции, секции которых изготавливаются по технологии экструзии, могут при определенных неблагоприятных условиях дать течь на соединениях. При этом провести ремонт – попросту невозможно, и придется менять всю батарею в целом.

Изо всех алюминиевых батарей самые качественные – изготовленные с применением анодного оксидирования металла. Этим изделиям практически не страшна кислородная коррозия.

Внешне все алюминиевые радиаторы примерно похожи, поэтому необходимо очень внимательно читать техническую документацию, делая выбор.

Биметаллические радиаторы отопления

Подобные радиаторы по своей надежности оспаривают первенство с чугунными, а по тепловой отдаче – с алюминиевыми. Причина тому заключается в их особой конструкции.

Каждая из секций состоит из двух, верхнего и нижнего, стальных горизонтальных коллекторов (поз. 1), соединенных таким же стальным вертикальным каналом (поз.2). Соединение в единую батарею производится высококачественными резьбовыми муфтами (поз. 3). Высокая теплоотдача обеспечивается наружной алюминиевой оболочкой.

Стальные внутренние трубы выполнены из металла, которые не подвержен коррозии или имеет защитное полимерное покрытие. Ну а алюминиевый теплообменник ни при каких обстоятельствах не контактирует с теплоносителем, и коррозия ему абсолютно не страшна.

Таким образом, получается сочетание высокой прочности и износоустойчивости с отличными теплотехническими показателями.

Цены на популярные радиаторы отопления

Радиаторы отопления

Такие батареи не боятся даже очень больших скачков давления, высоких температур. Они, по сути, универсальны, и подходят для любых систем отопления, правда, наилучшие эксплуатационные характеристики они все же показывают в условиях высокого давления центральной системы – для контуров с естественной циркуляцией они малопригодны.

Пожалуй, единственных их недостаток – высокая цена по сравнению с любыми другими радиаторами.

Для удобства восприятия размещена таблица, в которой приведены сравнительные характеристики радиаторов. Условные обозначения в ней:

  • ТС – трубчатые стальные;
  • Чг – чугунные;
  • Ал – алюминиевые обычные;
  • АА – алюминиевые анодированные;
  • БМ – биметаллические.
Чг ТС Ал АА БМ
Давление максимальное (атмосфер)
рабочее 6-9 6-12 10-20 15-40 35
опрессовочное 12-15 9 15-30 25-75 57
разрушения 20-25 18-25 30-50 100 75
Ограничение по рН (водородному показателю) 6,5-9 6,5-9 7-8 6,5-9 6,5-9
Подверженность коррозии под воздействием:
кислорода нет да нет нет да
блуждающих токов нет да да нет да
электролитических пар нет слабое да нет слабое
Мощность секции при h=500 мм; Dt=70 ° , Вт 160 85 175-200 216,3 до 200
Гарантия, лет 10 1 3-10 30 3-10

Видео: рекомендации по выбору радиаторов отопления

Возможно, вас заинтересует информация о том, что собой представляет

Как рассчитать нужное количество секций радиатора отопления

Понятно, что установленный в помещении радиатор (один или несколько) должен обеспечить прогрев до комфортной температуры и компенсировать неизбежные теплопотери, независимо от погоды на улице.

Базовой величиной для вычислений всегда выступает площадь или объем комнаты. Сами по себе профессиональные расчеты – весьма сложны, и учитывают очень большое число критериев. Но для бытовых нужд можно воспользоваться упрощенными методиками.

Самые простые способы расчета

Принято считать, что для создания нормальных условий в стандартном жилом помещении достаточно 100 Вт на квадратный метр пл ощади. Таким образом, следует всего лишь вычислить площадь комнаты и умножить ее на 100.

Q = S × 100

Q – требуемая теплоотдача от радиаторов отопления.

S – площадь обогреваемого помещения.

Если планируется установка неразборного радиатора, то это значение и станет ориентиром для подбора необходимой модели. В случае, когда будут устанавливаться батареи, допускающие изменение количества секций, следует провести еще один подсчет :

N = Q / Qус

N – рассчитываемое количество секций.

Qус – удельная тепловая мощность одной секции. Эта величина в обязательном порядке указывается в техническом паспорте изделия.

Как видите, расчеты эти чрезвычайно просты, и не требуют каких-либо особых знаний математики – достаточно рулетки чтобы измерить комнату и листка бумаги для вычислений. Кроме того, можно воспользоваться и таблицей, расположенной ниже – там приведены уже рассчитанные значения для комнат различной площади и определённых мощностей обогревательных секций.

Таблица секции

Однако, нужно помнить, что эти значения – для стандартной высоты потолка (2,7 м ) многоэтажки. Если высота комнаты иная, то лучше просчитать количество секций батареи, исходя из объема помещения. Для этого применяется усредненный показатель – 41 В т т епловой мощности на 1 м³ объема в панельном доме, или 34 Вт – в кирпичном.

Q = S × h × 40 (34 )

где h – высота потолка над уровнем пола.

Дальнейший расчет – ничем не отличается от представленного выше.

Подробный расчет с учетом особенностей помещения

А теперь перейдем к более серьезным расчетам . Упрощенная методика вычисления, приведенная выше, может преподнести хозяевам дома или квартиры «сюрприз». Когда установленные радиаторы не будут создавать в жилых помещениях требуемого комфортного микроклимата. И причина тому – целый перечень нюансов, которых рассмотренный метод просто не учитывает. А между тем , подобные нюансы могут иметь весьма важное значение.

Итак, за основу вновь берется площадь помещения и всё те же 100 Вт на м². Но сама формула уже выглядит несколько иначе:

Q = S × 100 × А × В × С × D × Е × F × G × H × I × J

Буквами от А до J условно обозначены коэффициенты, учитывающие особенности помещения и установки в нем радиаторов. Рассмотрим их по по рядку:

А – количество внешних стен в помещении.

Понятно, что чем выше площадь контакта помещения с улицей, то есть, чем больше в комнате внешних стен, тем выше общие теплопотери. Эту зависимость учитывает коэффициент А :

  • Одна внешняя стена – А = 1,0
  • Две внешних стены – А = 1,2
  • Три внешний стены – А = 1,3
  • Все четыре стены внешние – А = 1,4

В – ориентация помещения по сторонам света.

Максимальные теплопотери всегда в комнатах, в которые не поступает прямого солнечного света. Это, безусловно, северная сторона дома, и сюда же можно отнести восточную – лучи Солнца здесь бывают только по утрам, когда светило еще «не вышло на полную мощность».

Южная и западная стороны дома всегда прогреваются Солнцем значительно сильнее.

Отсюда – значения коэффициента В :

  • Комната выходит на север или восток – В = 1,1
  • Южная или западная комнаты – В = 1, то есть, может не учитываться.

С – коэффициент, учитывающий степень утепленности стен.

Понятно, что теплопотери из отапливаемого помещения будут зависеть от качества термоизоляции внешних стен. Значение коэффициента С принимают равным:

  • Средний уровень - стены выложены в два кирпича, или предусмотрено их поверхностное утепление другим материалом – С = 1,0
  • Внешние стены не утеплены – С = 1,27
  • Высокий уровень утепления на основе теплотехнических расчетов – С = 0,85.

D – особенности климатических условий региона.

Естественно, что нельзя равнять все базовые показатели требуемой мощности обогрева «под одну гребенку » — они зависят и от уровня зимних отрицательных температур, характерного для конкретной местности. Это учитывает коэффициент D. Для его выбора берутся средние температуры самой холодной декады января – обычно это значение несложно уточнить в местной гидрометеорологической службе.

  • — 35 ° С и ниже – D= 1,5
  • — 25÷ — 35 ° С D= 1,3
  • до – 20 ° С D= 1,1
  • не ниже – 15 ° С D= 0,9
  • не ниже – 10 ° С D= 0,7

Е – коэффициент высоты потолков помещения.

Как уже говорилось, 100 Вт/м² — это усредненное значение для стандартной высоты потолков. Если она отличается, следует ввести поправочный коэффициент Е :

  • До 2,7 м Е = 1, 0
  • 2,8 3, 0 м Е = 1, 05
  • 3,1 3, 5 м Е = 1, 1
  • 3,6 4, 0 м Е = 1,15
  • Более 4,1 м – Е = 1,2

F– коэффициент, учитывающий тип помещения, расположенного выше

Устраивать систему отопления в помещениях с холодным полом – бессмысленное занятие, и хозяева всегда в этом вопросе принимают меры. А вот тип помещения, расположенного выше, часто от них никак не зависит. А между тем, если сверху жилое или утепленное помещение, то общая потребность в тепловой энергии значительно снизится:

  • холодный чердак или неотапливаемое помещениеF= 1,0
  • утепленный чердак (в том числе – и утепленная кровля) – F= 0,9
  • отапливаемое помещение – F= 0,8

G– коэффициент учета типа установленных окон.

Различные оконные конструкции подвержены теплопотерям неодинаково. Это учитывает коэффициент G :

Н – коэффициент пл ощади остекления помещения.

Общее количество теплопотерь зависит и от суммарной площади окон, установленных в помещении. Эта величина рассчитывается на основании отношения площади окон к площади помещения. В зависимости от полученного результата находим коэффициент Н :

  • Отношение менее 0,1 – Н = 0, 8
  • 0,11 ÷ 0,2 – Н = 0, 9
  • 0,21 ÷ 0,3 – Н = 1, 0
  • 0,31÷ 0,4 – Н = 1, 1
  • 0,41 ÷ 0,5 – Н = 1,2

I– коэффициент, учитывающий схему подключения радиаторов.

От того, как подключены радиаторы к трубам подачи и обратки , зависит их теплоотдача. Это тоже следует учесть при планировании установки и определения нужного количества секций:

  • а – диагональное подключение, подача сверху, обратка снизу – I = 1,0
  • б – одностороннее подключение, подача сверху, обратка снизу – I = 1,03
  • в – двустороннее подключение, и подача, и обратка снизу – I = 1,13
  • г – диагональное подключение, подача снизу, обратка сверху – I = 1,25
  • д – одностороннее подключение, подача снизу, обратка сверху – I = 1,28
  • е – одностороннее нижнее подключение обратки и подачи – I = 1,28

J– коэффициент, учитывающий степень открытости установленных радиаторов.

Многое зависит и от того, насколько установленные батареи открыты для свободного теплообмена с воздухом помещения. Имеющиеся или искусственно созданные преграды способны существенно снизить теплоотдачу радиатора. Это учитывает коэффициент J :

а – радиатор расположен открыто на стене или не прикрыт подоконником – J= 0,9

б – радиатор прикрыт сверху подоконником или полкой – J= 1,0

в – радиатор прикрыт сверху горизонтальным выступом стеновой ниши – J= 1,07

г – радиатор сверху прикрыт подоконником, а с фронтальной стороны части чно прикрыт декоративным кожухом – J= 1,12

д – радиатор полностью прикрыт декоративным кожухом– J= 1,2

⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰

Ну вот, наконец, и все. Теперь можно подставлять в формулу нужные значения и соответствующие условиям коэффициенты, и на выходе получится требуемая тепловая мощность для надежного обогрева помещения, с учетом все нюансов.

После этого останется или подобрать неразборный радиатор с нужной тепловой отдачей, или же разделить вычисленное значение на удельную тепловую мощность одной секции батареи выбранной модели.

Наверняка , многим такой подсчет покажется чрезмерно громоздким, в котором легко запутаться. Для облегчения проведения вычислений предлагаем воспользоваться специальным калькулятором – в него уже заложены все требуемые величины. Пользователю остается лишь ввести запрашиваемые исходные значения или выбрать из списков нужные позиции. Кнопка «рассчитать» сразу приведет к получению точного результата с округлением в большую сторону.

Загрузка...