domvpavlino.ru

Базальные ганглии кратко. Особенности строения базальных узлов. Физиология базальных ядер

Базальные ганглии , или подкорковые ядра , — это тесно связанные между собой структуры мозга, расположенные в глубине больших полушарий между лобными долями и .

Базальные ганглии являются парными образованиями и состоят из ядер серого вещества, разделенных прослойками белого — волокон внутренней и наружной капсул мозга. В состав базальных ганглиев входят: полосатое тело, состоящее из хвостового ядра и скорлупы, бледный шар и ограда. С функциональной точки зрения иногда к понятию базальных ганглиев относят также субталамическое ядро и черную субстанцию (рис. 1). Большой размер этих ядер и подобие в структуре у различных видов дают основание предполагать, что они вносят большой вклад в организацию работы мозга наземных позвоночных животных.

Основные функции базальных ганглиев:
  • Участие в формировании и хранении программ врожденных и приобретенных двигательных реакций и координация этих реакций (основная)
  • Регуляция тонуса мышц
  • Регуляция вегетативных функций (трофические процессы, углеводный обмен, слюно- и слезотечение, дыхание и т.д.)
  • Регуляция чувствительности организма на восприятие раздражений (соматических, слуховых, зрительных и др.)
  • Регуляция ВНД (эмоциональные реакции, память, скорость выработки новых условных рефлексов, скорость переключения с одной формы деятельности на другую)

Рис. 1. Важнейшие афферентные и эфферентные связи базальных ганглиев: 1 паравентрикулярное ядро; 2 вентролатеральное ядро; 3 срединные ядра таламуса; СЯ — субталамическое ядро; 4 — кортикоспинальный тракт; 5 — кортикомостовой тракт; 6 — эфферентный путь от бледного шара к среднему мозгу

Из клинических наблюдений давно известно, что одним из последствий заболеваний базальных ганглиев является нарушение тонуса мышц и движений . На этом основании можно было бы предполагать, что базальные ганглии должны быть связаны с моторными центрами ствола и спинного мозга. Современными методами исследования показано, что аксоны их нейронов не следуют в нисходящем направлении к моторным ядрам ствола и спинного мозга, а повреждение ганглиев не сопровождается парезами мышц, как это имеет место при повреждении других нисходящих моторных путей. Большая часть эфферентных волокон базальных ганглиев следует в восходящем направлении к моторным и другим областям коры больших полушарий мозга.

Афферентные связи

Структурой базальных ганглиев , к нейронам которой поступает большая часть афферентных сигналов, является полосатое тело . Его нейроны получают сигналы из коры больших полушарий мозга, ядер таламуса, клеточных групп черной субстанции промежуточного мозга, содержащих дофамин, и от нейронов ядра шва, содержащих серотонин. При этом нейроны скорлупы полосатого тела получают сигналы преимущественно из первичной соматосенсорной и первичной моторной коры, а нейроны хвостатого ядра (уже предварительно интегрированные полисенсорные сигналы) из нейронов ассоциативных областей коры больших полушарий мозга. Анализ афферентных связей базальных ядер с другими структурами мозга предполагает, что от них в ганглии поступает не только информация, связанная с движениями, но и информация, которая может отражать состояние общей активности мозга и быть связана с его высшими, познавательными функциями и эмоциями.

Полученные сигналы подвергаются в базальных ганглиях сложной обработке, в которой участвуют его различные структуры, связанные между собой многочисленными внутренними связями и содержащие различные типы нейронов. Среди этих нейронов большинство составляют ГАМК-ергические нейроны полосатого тела, которые посылают аксоны к нейронам бледного шара и черной субстанции. Эти нейроны продуцируют также динорфин и энкефалин. Большой удельный вес в передаче и обработке сигналов внутри базальных ганглиев занимают его возбуждающие холинергические интернейроны с широко ветвящимися дендритами. К этим нейронам конвергируют аксоны нейронов черной субстанции, секретирующие дофамин.

Эфферентные связи базальных ганглиев используются для посылки сигналов, обработанных в ганглиях, в другие структуры мозга. Нейроны, формирующие основные эфферентные пути базальных ганглиев, располагаются главным образом в наружном и внутреннем сегментах бледного шара и в черной субстанции, получающих афферентные сигналы в основном из полосатого тела. Часть эфферентных волокон бледного шара следует в интраламинарные ядра таламуса и оттуда — в полосатое тело, образуя подкорковую нейронную сеть. Большая часть аксонов эфферентных нейронов внутреннего сегмента бледного шара следует через внутреннюю капсулу к нейронам вентральных ядер таламуса, а от них — в префронтальную и дополнительную моторную кору больших полушарий. Через связи с моторными областями коры мозга базальные ганглии оказывают влияние на контроль движений, осуществляемый корой через кортикоспинальный и другие нисходящие двигательные пути.

Хвостатое ядро получает афферентные сигналы с ассоциативных областей коры мозга и, обработав их, посылает эфферентные сигналы преимущественно в префронтальную кору. Предполагается, что эти связи являются основой для участия базальных ганглиев в решении задач, связанных с подготовкой и исполнением движений. Так, при повреждении хвостатого ядра у обезьян нарушается способность выполнять движения, требующие сведений из аппарата пространственной памяти (например, учета, где расположен предмет).

Базальные ганглии связаны эфферентными связями с ретикулярной формацией промежуточного мозга, через которые участвуют в контроле ходьбы, а также с нейронами верхних холмиков, через которые они могут контролировать движения глаз и головы.

С учетом афферентных и эфферентных связей базальных ганглиев с корой и другими структурами мозга выделяют несколько нейронных сетей или петель, проходящих через ганглии или заканчивающихся внутри их. Моторная петля образована нейронами первичной моторной, первичной сенсомоторной и дополнительной моторной коры, чьи аксоны следуют к нейронам скорлупы и затем через бледный шар и таламус достигают нейронов дополнительной моторной коры. Глазодвигательная петля образована нейронами моторных полей 8, 6 и сенсорного поля 7, аксоны которых следуют в хвостатое ядро и далее к нейронам лобного глазного поля 8. Префронтальные петли образованы нейронами префронтальной коры, аксоны которых следуют к нейронам хвостатого ядра, черного тела, бледного шара и вентральных ядер таламуса и затем достигают нейронов прсфронтальной коры. Каемчатая петля образована нейронами круговой извилины, орбитофронтальной коры, некоторых областей височной коры, тесно связанных со структурами лимбической системы. Аксоны этих нейронов следуют к нейронам вентральной части полосатого тела, бледного шара, медиодорсального таламуса и далее — к нейронам тех областей коры, в которых петля начиналась. Как можно видеть, каждая петля формируется множественными корковостриарными связями, которые после их прохождения через базальные ганглии следуют через ограниченную область таламуса в определенную одиночную область коры.

Области коры, посылающие сигналы в ту или иную петлю, функционально связаны друг с другом.

Функции базальных ганглиев

Нейронные петли базальных ганглиев являются морфологической основой выполняемых ими основных функций. Среди них — участие базальных ганглиев в подготовке и осуществлении движений. Особенности участия базальных ганглиев в выполнении этой функции вытекают из наблюдений за характером нарушения движений при заболеваниях ганглиев. Предполагается, что базальные ганглии играют важную роль в планировании, программировании и выполнении сложных движений, инициируемых корой больших полушарий.

С их участием абстрактный замысел движения превращается в моторную программу сложных произвольных действий. Их примером могут быть такие действия, как одновременное осуществление нескольких движений в отдельных суставах. Действительно, при регистрации биоэлектрической активности нейронов базальных ганглиев во время выполнения произвольных движений отмечается се повышение в нейронах субталамических ядер, ограды, внутреннего сегмента бледного шара и ретикулярной части черного тела.

Повышение активности нейронов базальных ганглиев инициируется притоком возбуждающих сигналов к нейронам полосатого тела из коры больших полушарий, опосредованных высвобождением глутамата. К этим же нейронам поступает поток сигналов из черной субстанции, оказывающий на нейроны полосатого тела притормаживающее действие (через высвобождение ГАМК) и способствующий фокусированию влияния нейронов коры на определенные группы нейронов полосатого тела. В это же время к его нейронам поступают афферентные сигналы из таламуса с информацией о состоянии активности других областей мозга, имеющих отношение к организации движений.

Нейроны полосатого тела интегрируют все эти потоки информации и передают ее нейронам бледного шара и ретикулярной части черной субстанции и далее но эфферентным путям эти сигналы передаются через таламус в моторные области коры мозга, в которых осуществляется подготовка и инициирование предстоящего движения. Предполагается, что базальные ганглии еще на этапе подготовки движения осуществляют выбор типа движения, необходимого для достижения поставленной цели, отбор мышечных групп, необходимых для его эффективного выполнения. Вероятно, базальные ганглии участвуют в процессах моторного обучения путем повторения движений, причем их роль заключается в выборе оптимальных путей осуществления сложных движений для достижения желаемого результата. С участием базальных ганглиев достигается устранение избыточности движений.

Еще одной из моторных функций базальных ганглиев является участие в осуществлении автоматических движений или моторных навыков. Когда базальные ганглии повреждены, человек выполняет их в более замедленном темпе, менее автоматизировано, с меньшей точностью. Двустороннее разрушение или повреждение ограды и бледного шара у человека сопровождается возникновением навязчиво-принудительного двигательного поведения и появлением элементарных стереотипных движений. Двустороннее повреждение или удаление бледного шара ведет к снижению двигательной активности и гипокинезии, в то время как одностороннее повреждение этого ядра или не влияет, или слабо сказывается на двигательных функциях.

Поражение базальных ганглиев

Патология в области базальных ганглиев у человека сопровождается появлением непроизвольных и нарушением произвольных движений, а также нарушением распределения тонуса мышц и позы. Непроизвольные движения проявляются обычно при спокойном бодрствовании и исчезают во время сна. Различают две большие группы нарушения движений: с доминированием гипокинезии — брадикинезии, акинезии и ригидности, которые наиболее выражены при паркинсонизме; с доминированием гиперкинезии, которая наиболее характерна для хореи Хантингтона.

Гиперкинетические моторные нарушения могут проявляться тремором покоя — непроизвольными ритмическими сокращениями мышц дистальных и проксимальных отделов конечностей, головы и других частей тела. В других случаях они могут проявляться хореей — внезапными, быстрыми, насильственными движениями мышц туловища, конечностей, лица (гримасы), появляющимися вследствие дегенерации нейронов хвостатого ядра, голубоватого пятна и других структур. В хвостатом ядре обнаружено снижение уровня нейромедиаторов — ГАМК, ацетилхолина и нейромодуляторов — энкефалина, вещества Р, динорфина и холецистокинина. Одним из проявлений хореи является атетоз — медленные, продолжительные корчащие движения дистальных частей конечностей, обусловленных нарушением функции ограды.

В результате одностороннего (при кровоизлиянии) или двустороннего повреждения субталамических ядер может развиться баллизм , проявляющийся внезапными, насильственными, большой амплитуды и интенсивности, молотящими, стремительными движениями на противоположной (гемибаллизм) или обеих сторонах тела. Заболевания в области полосатого тела могут вести к развитию дистонии , которая проявляется насильственными, медленными, повторяющимися, скручивающими движениями мышц руки, шеи или торса. Примером локальной дистонии может быть непроизвольное сокращение мышц предплечья и кисти во время письма — писчий спазм. Заболевания в области базальных ганглиев могут вести к развитию тиков, характеризующихся внезапными, кратковременными насильственными движениями мышц различных частей тела.

Нарушение мышечного тонуса при заболеваниях базальных ганглиев проявляется ригидностью мышц. При ее наличии попытка изменения положения в суставах сопровождается у больного движением, напоминающим таковое для зубчатого колеса. Оказываемое мышцами сопротивление возникает через определенные интервалы. В других случаях может развиться восковая ригидность, при которой сохраняется сопротивление во всем интервале движения в суставе.

Гипокинетические моторные нарушения проявляются задержкой или невозможностью начать движение (акинезия), замедленностью выполнения движений и их завершения (брадикинезия).

Нарушения моторных функций при заболеваниях базальных ганглиев могут иметь смешанный характер, напоминая парезы мышц или, наоборот, их спастичность. При этом может развиться нарушение движений от неспособности начать движение к неспособности подавить непроизвольные движения.

Наряду с тяжелыми, инвалидизирующими нарушениями движений другим диагностическим признаком паркинсонизма является невыразительное лицо, часто называемое паркинсонической маской. Одним из его признаков является недостаточность или невозможность спонтанного смещения взора. Взор больного может оставаться застывшим, но он может перемещать его по команде в направлении визуального объекта. Эти факты предполагают, что базальные ганглии вовлечены в контроль смещения взора и зрительного внимания, используя сложную глазодвигательную нейронную сеть.

Одним из возможных механизмов развития двигательных и, в частности, глазодвигательных нарушений при повреждении базальных ганглиев может быть нарушение передачи сигналов в нейронных сетях вследствие нарушения нейромеднаторного баланса. У здоровых людей активность нейронов полосатого тела находится под уравновешенным влиянием афферентных тормозных (дофамин, ГАМ К) сигналов черной субстанции и возбуждающих (глутамат) сенсомоторной коры. Одним из механизмов поддержания этого равновесия является его регуляция сигналами бледного шара. Нарушение равновесия в сторону преобладания тормозных влияний ограничивает возможность достижения сенсорной информации моторных областей коры мозга и ведет к снижению моторной активности (гипокинезии), что наблюдается при паркинсонизме. Потеря базальными ганглиями (при заболеваниях или с возрастом) части тормозных дофаминовых нейронов может вести к облегчению поступления сенсорной информации в моторную систему и увеличению ее активности, как это наблюдается при хорее Хантингтона.

Одним из подтверждений того, что нейромедиаторный баланс имеет важное значение в осуществлении моторных функций базальных ганглиев, а его нарушение сопровождается двигательной недостаточностью, является клинически подтвержденный факт, что улучшение двигательных функций при паркинсонизме достигается при приеме L-dopa — предшественника синтеза дофамина, который проникает в мозг через гематоэнцефалический барьер. В мозге под влиянием фермента дофаминкарбоксилазы происходит его превращение в дофамин, что способствует ликвидации дофаминовой недостаточности. Лечение паркинсонизма приемом L-dopa является в настоящее время наиболее эффективным методом, применение которого позволило не только облегчить состояние больных, но и увеличить продолжительность их жизни.

Разработаны и применены методы хирургической коррекции двигательных и других нарушений у больных посредством стереотаксического разрушения бледного шара или вентролатерального ядра таламуса. После этой операции удается устранить ригидность и тремор мышц на противоположной стороне, но не устраняются акинезии и нарушение позы. В настоящее время используется также операция вживления постоянных электродов в таламус, через которые проводится его хроническая электростимуляция.

Осуществлены трансплантация в мозг клеток, продуцирующих дофамин, и пересадка в область желудочковой поверхности мозга больных мозговых клеток одного из их надпочечников, после которой в части случаев достигалось улучшение состояния больных. Предполагается, что пересаженные клетки могли стать в течение некоторого времени источником образования дофамина или факторов роста, способствовавших восстановлению функции пострадавших нейронов. В других случаях в мозг имплантировалась ткань базальных ганглиев эмбрионов, результаты которой оказались лучше. Трансплантационные методы лечения пока не получили широкого распространения и их эффективность продолжает изучаться.

Функции других нейронных сетей базальных ганглиев остаются малоизученными. На основании клинических наблюдений и экспериментальных данных предполагается, что базальные ганглии участвуют в изменении состояния активности мышц и позы при переходе от сна к бодрствованию.

Базальные ганглии участвуют в формировании настроения, мотиваций и эмоций человека, в особенности связанных с исполнением движений, направленных на удовлетворение жизненно важных потребностей (прием пищи, питье) или получение морального и эмоционального удовольствия (вознаграждения).

У большинства больных с нарушением функций базальных ганглиев выявляются симптомы психомоторных изменений. В частности, при паркинсонизме может развиваться состояние депрессии (подавленное настроение, пессимизм, повышенная ранимость, печаль), беспокойства, апатии, психоз, снижение познавательных и умственных способностей. Это свидетельствует о важной роли базальных ганглиев в осуществлении высших психических функций у человека.

Прочитайте:
  1. A-Аминокислоты, строение, номенклатура, изомерия
  2. LEA белки. Классификация, выполняемые функции.
  3. V2: Тема 7.4 Конечный мозг (обонятельный мозг, 1 пара ЧН, базальные ядра).
  4. Базальные ядра конечного мозга. Боковые желудочки мозга: топография, отделы, строение.
  5. Базальные ядра, их нервные связи и функциональное значение.
  6. Базальные ядра. Роль в формировании мышечного тонуса и сложных двигательных актов, в реализации двигательных программ и организации высших психических функций.
  7. Базальные ядра. Роль хвостатого ядра, скорлупы, бледного шара, ограды в регуляции мышечного тонуса, сложных двигательных реакциях, условно-рефлекторной деятельности организма.
  8. Белое вещество спинного мозга: строение и функции.
  9. Биологическая мембрана. Свойства и функции. Мембранные белки. Гликокаликс.

Базальные ганглии: строение, расположение и функции

Базальные ганглии - комплекс подкорковых нейронных узлов, расположенных в центральном белом веществе полушарий большого мозга. Базальные ганглии обеспечивают регуляцию двигательных и вегетативных функций, участвуют в осуществлении интегративных процессов высшей нервной деятельности. Базальные ганглии, как и мозжечок, представляют другую вспомогательную двигательную систему, которая функционирует обычно не сама по себе, а в тесной связи с корой большого мозга и кортикоспинальной системой двигательного контроля. На каждой стороне мозга эти ганглии состоят из хвостатого ядра, скорлупы, бледного шара, черного вещества и субталамического ядра. Анатомические связи между базальными ганглиями и другими элементами мозга, обеспечивающими двигательный контроль, сложные. Одной из главных функций базальных ганглиев в двигательном контроле является их участие в регуляции выполнения сложных двигательных программ вместе с кортикоспинальной системой, например в движении при написании букв. К другим сложным двигательным актам, требующим участия базальных ганглиев, относят резание ножницами, забивание гвоздей молотком, броски баскетбольного мяча через обруч, ведение мяча в футболе, бросание мяча в бейсболе, движения лопатой при копании земли, большинство процессов вокализации, управляемые движения глаз и практически любое из наших точных движений, в большинстве случаев выполняемых бессознательно. Базальные ганглии входят в состав переднего мозга, расположенного на границе между лобными долями и над стволом мозга. Базальные ганглии включают в себя следующие компоненты:

— бледный шар - наиболее древнее образование стриопаллидарной системы

— неостриатум - в его состав входят полосатое тело и скорлупа

— ограда - самое новое образование.

Связи базальных ганглиев: 1. внутри, между базальными ганглиями. За их счет компоненты базальных ганглиев тесно взаимодействуют и образуют единую стриопаллидарную систему 2. связь с образованиями среднего мозга. Они носят двусторонний характер за счет дофаминэргических нейронов. За счет этих связей стриопаллидарная система тормозит активность красных ядер и черной субстанции, которые регулируют мышечный тонус 3. связь с образованиями промежуточного мозга таламусом и гипоталамусом 4. с лимбической системой 5. с корой головного мозга.

Функции бледного шара: — регулирует мышечный тонус, участвует в регуляции двигательной активности- участвует в эмоциональных реакциях за счет влияния на мимическую мускулатуру- участвует в интегративной деятельности внутренних органов, способствует объединению функции внутренних органов и мышечной системы.

При раздражении бледного шара наблюдается резкое снижение мышечного тонуса, замедление движений, нарушение координации движений, деятельности внутренних органов сердечнососудистой и пищеварительной систем.

Функции полосатого тела:

Полосатое тело состоит из более крупных нейронов с длинными отростками, которые выходят за пределы стриопаллидарной системы. Полосатое тело регулирует мышечный тонус, уменьшая его; участвует в регуляции работы внутренних органов; в осуществлении различных поведенческих реакций пищедобывающее поведение; участвует в формировании условных рефлексов.

Функции ограды: — участвует в регуляции мышечного тонуса- участвует в эмоциональных реакциях- участвует в формировании условных рефлексов.

Дата добавления: 2015-12-15 | Просмотры: 953 | Нарушение авторских прав

Базальные ганглии

В основании больших полушарий (нижняя стенка боковых желудочков) расположены ядра серого вещества - базальные ганглии. Они составляют примерно 3% от объема полушарий. Все базальные ганглии функционально объединены в две системы. Первая группа ядер представляет собой стриопаллидарную систему (рис. 41, 42, 43). К ним относятся: хвостатое ядро (nucleus caudatus), скорлупа (putamen) и бледный шар (globus pallidus). Скорлупа и хвостатое ядро имеют слоистую структуру, и поэтому их общее название - полосатое тело (corpus striatum). Бледный шар не имеет слоистости и выглядит светлее стриатума. Скорлупа и бледный шар объединены в чечевицеобразное ядро (nucleus lentiformis). Скорлупа образует наружный слой чечевицеобразного ядра, а бледный шар - внутренние его части. Бледный шар, в свою очередь, состоит из наружного

и внутреннего члеников.
Анатомически хвостатое ядро тесно связано с боковым желудочком. Расположенная впереди и медиально расширенная его часть - головка хвостатого ядра образует боковую стенку переднего рога желудочка, тело ядра - нижнюю стенку центральной части желудочка, а тонкий хвост - верхнюю стенку нижнего рога. Следуя форме бокового желудочка, хвостатое ядро охватывает дугой чечевицеобразное ядро (рис. 42, 1; 43, 1/). Друг от друга хвостатое и чечевицеобразное ядра отделены прослойкой белого вещества - частью внутренней капсулы (capsula interna). Другая часть внутренней капсулы отделяет чечевицеобразное ядро от нижележащего таламуса (рис. 43,
4).
80
Рис. 41. Полушария мозга на разных уровнях горизонтального разреза:
(справа - ниже уровня дна бокового желудочка; слева - над дном бокового желудочка; IV желудочек мозга вскрыт сверху):
1 - головка хвостатого ядра; 2 - скорлупа; 3 - кора мозгового островка; 4 - бледный шар; 5 - ограда; 6

А так же в разделе «Базальные ганглии»

Глава VIl. ПОДКОРКОВЫЕ ГАНГЛИИ, ВНУТРЕННЯЯ КАПСУЛА, СИМПТОМОКОМПЛЕКСЫ ПОРАЖЕНИИ

ЗРИТЕЛЬНЫЕ БУГРЫ

Продолжением мозгового ствола кпереди являются зритель­ные бугры, расположенные по сторонам. III желудочка (см. рис. 2 и 55, III}.

Зрительный бугор (thalamus opticus - рис. 55, 777) пред­ставляет собой мощное скопление серого вещества, в котором можно различить ряд ядерных образований.

Существует деление зрительного бугра на собственно thalamus, hupothalamus, metathalamus и epithalamus.

Thalamus - основная масса зрительного бугра - состоит из переднего, на­ружного, внутреннего, вентрального и заднего ядер.

Hypothalamus имеет целый ряд ядер, расположенных в стенках III желу­дочка и его воронке (infundibulum). Последняя весьма тесно связана с гипо­физом как в анатомическом, так и функциональном отношении. Сюда же отно­сятся сосковидные тела (corpora mamillaria).

Metathalamus включает в себя наружные и внутренние коленчатые тела (corpora geniculata laterale et mediale).

Epithalamus включает в себя эпифиз, или шишковидную железу (glandula pinealis), и заднюю комиссуру (comissura posterior).

Зрительный бугор является важным этапом на пути проведе­ния чувствительности. К нему подходят следующие чувствитель­ные проводники (с противоположной стороны).

Медиальная петля с ее бульбо-таламическими волокнами (осязание, суставно-мышечное чувство, чувство вибрации и др.) и спино-таламическим путем (болевое и температурное чувство).

2. Lemniscus trigemini - от чувствительного ядра тройнич­ного нерва (чувствительность лица) и волокна от ядер языкоглоточного и блуждающего нервов (чувствительность глотки, гортани и др., а также внутренних органов).

3. Зрительные тракты, заканчивающиеся в pulvinar зритель­ного бугра и в corpus geniculatum laterale (зрительные пути).

4. Латеральная петля, заканчивающаяся в corpus genicula­tum mediale (слуховые пути).

В зрительном бугре заканчиваются также обонятельные пути и волокна от мозжечка (от красных ядер).

Таким образом, к зрительному бугру притекают импульсы экстероцептивной чувствительности, воспринимающей раздра­жения извне (боль, температуру, прикосновения, свет и др.), проприоцептивной (суставно-мышечное чувство, чувство поло­жения и движения) н интероцептивной (от внутренних органов).

Такое средоточие всех видов чувствительности в зрительном бугре станет понятным, если принять во внимание, что на опре­деленных этапах эволюции нервной системы зрительный бугор был главным и конечным чувстви­тельным центром, определяющим общие двигательные реакции орга­низма рефлекторного порядка пу­тем передачи раздражения на цент­робежные двигательные аппараты.

С появлением и развитием коры головного мозга усложняется и совершенствуется чувствительная функция; появляется способность тонкого анализа, дифференцировки и локализации раздражении. Основ­ная роль в чувствительной функции переходит к коре головного мозга. Однако ход чувствительных путей остается прежним; возникает лишь продолжение их от зрительного буг­ра к коре. Зрительный бугор стано­вится в основном лишь передаточ­ный станцией на пути импульсов от периферии к коре. Действительно, существуют многочисленные таламо-кортикальные пути (tractus thalamo-corticales), те (в основном, третьи) нейроны чувствительности, которые были уже рассмо­трены в главе о чувствительности и о которых следует только кратко упомянуть:

1) третьи нейроны кожной и глубокой чувствительности (бо­левого, температурного, осязательного, суставно-мышечного чув­ства и др.), начинающиеся из вентро-латерального отдела зри­тельного бугра, проходящие через внутреннюю капсулу в область задней центральной извилины и теменную долю (рис. 55, VII);

2) зрительные пути от первичных зрительных центров (corpus geniculatum laterale - radiatio optica) или пучок Грасьоле, в об­ласть fissurae calcarinae затылочной доли (рис.

55, VIII),

3) слуховые пути от первичных слуховых центров (corpus geniculatum mediale) в верхнюю височную извилину и извилины Гешля (рис. 55, IX).

Рис. 55. Подкорковые ганглии и внутренняя капсула.

I - nucleus caudatus;II - nucleus lenticularis;III - thalamus opticus; IV - tractus cortico-bulbaris; V - trac­tus cortico-spinalis; VI - tractus oc-cipito-temporo-pontinus; VII - tractus ttialamo-corticalis: VIII - radiatio opti­ca; IX - слуховые пути к коре; X - tractus fronto-pontinus.

Помимо названных уже связей, зрительный бугор имеет пути, связывающие его со стрио-паллидарной системой. Анало­гично тому, как thalamus opticus является на определенных эта­пах развития нервной системы высшим чувствительным цент­ром, стрио-паллидарная система была конечным двигательным аппаратом, осуществляющим до­статочно сложную рефлекторную деятельность.

Поэтому связи зрительного бугра с названной системой весь­ма интимны, и весь аппарат в це­лом может быть назван таламо-стрио-паллидарной системой с воспринимающим звеном в виде thalamus opticus и двигательным в виде стрио-паллидарного аппа­рата (рис. 56).

О связях зрительного бугра с корой головного мозга - в на­правлении thalamus - кора уже было сказано. Кроме того, суще­ствует мощная система проводни­ков обратного направления, от коры головного мозга к зритель­ным буграм. Эти пути исходят из различных отделов коры (tractus cortico-thalamici); наиболее мас­сивным из них является тот, кото­рый начинается из лобной доли.

Наконец, следует упомянуть о связях зрительного бугра с подбугровой областью (hypothalamus), где сосредоточены подкор­ковые центры вегетативно-висце­ральной иннервации.

Связи ядерных образований таламической области весьма многочисленны, сложны и в деталях изучены еще недостаточно. В последнее время, главным образом на основании электрофизиологических исследований, предла­гается делить таламо-кортикальные системы на специфические (связанные с определенными проекционными зонами коры) и неспецифические, или диффуз­ные. Последние начинаются от медиальной группы ядер зрительного бугра (срединный центр, интраламинарные, ретикулярные и другие ядра).

Некоторые исследователи (Пенфилд, Джаспер) приписывают этим «неспе­цифическим ядрам» зрительного бугра, как и ретикулярной формации ствола, функцию «субстрата сознания» и «высшего уровня интеграции» нервной дея­тельности. В концепции «центроэнцефалической системы» кора рассматривается лишь как промежуточный этап на пути сенсорных импульсов, текущих от пери­ферии к «высшему уровню интеграции» в межуточном и среднем мозге. Сто­ронники этой гипотезы, вступают, таким образом, в противоречие с историей развития нервной системы, с многочисленными и очевидными фактами, уста­навливающими, что тончайший анализ и сложнейший синтез («интеграция») нервной деятельности осуществляются корой головного мозга, которая функ­ционирует, разумеется, не изолированно, а в неразрывной связи с нижележа­щими подкорковыми, стволовыми и сегментарными образованиями.

Рис. 56. Схема связей экстрапи­рамидной системы. Центробежные проводники ее.

N. с. nucleus caudatus; N. L. - nucleus lenticularis; gp. - globus. pallidus; Pat. - putamen; Th. - зрительный бугор; N. rub. - красное ядро, Tr. r. sp. - рубро-спиналъный пучок; Tr. cort. th. - tractus cortico-thalamicus; Subst. nigra - substantia nigra; Tr. tecto-sp. - tractus tecto-spinalis; 3. прод. пуч.

Базальные ядра

Задний продоль­ный пучок; Яд . Даркш. - ядро Даркшевича.

На основании приведенных анатомических данных, а также существующих клинических наблюдений, функциональное зна­чение зрительного бугра можно определить в основном следую­щими положениями. Зрительный бугор является:

1) передаточной станцией для проведения в кору всех видов «общей» чувствительности, зрительных, слуховых и других раз­дражении;

2) афферентным звеном сложной подкорковой таламо-стрио-паллидарной системы, осуществляющей достаточно сложные автоматизированные рефлекторные акты;

3) через посредство зрительного бугра, являющегося подкор­ковым центром также и для висцерорецепция, осуществляется благодаря связям с гипоталамической областью и корой боль­ших полушарий автоматическая регуляция внутренних. процес­сов организма и деятельности внутренних органов.

Получаемые зрительным бугром чувствительные импульсы могут приобре­тать здесь ту или иную эмоциональную окраску. По М.И. Аствацатурову, зрительный бугор является органом примитивных аффектов и эмоций, тесно связанных с чувством боли; одновременно возникают реакции со стороны вис­церальных приборов (покраснение, побледнение, изменения пульса и дыхания и т.д.) и аффективные, выразительные двигательные реакции смеха и плача.

Предыдущая24252627282930313233343536373839Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Анатомия и физиология базальных ганглиев и лимбической системы.

Лимбическая система имеет вид кольца и расположена на границе новой коры и ствола мозга. В функциональном отношении под лимбической системой понимают объединение различных структур конечного, промежуточного и среднего мозга, обеспечивающее эмоционально-мотивационные компоненты поведения и интеграцию висцеральных функций организма. В эволюционном аспекте лимбическая система сформировалась в процессе усложнения форм поведения организма, перехода от жестких, генетически запрограммированных форм поведения к пластичным, основанным на обучении и памяти.

Структурно-функциональная организация лимбической системы

В более узком понимании в лимбическую систему включают образования древней коры (обонятельная луковица и бугорок), старой коры (гиппокамп, зубчатая и поясная извилины), подкорковые ядра (миндалина и ядра перегородки). Этот комплекс рассматривается по отношению к гипоталамусу и ретикулярной формации ствола как более высокий уровень интеграции вегетативных функций.

Афферентные входы в лимбическую систему осуществляются от различных областей головного мозга, через гипоталамус от РФ ствола, обонятельных рецепторов по волокнам обонятельного нерва. Главным источником возбуждения лимбической системы является ретикулярная формация ствола головного мозга.

Эфферентные выходы из лимбической системы осуществляются: 1) через гипоталамус на нижележащие вегетативные и соматические центры ствола и спинного мозга, и 2) в новую кору (преимущественно ассоциативную).

Характерным свойством лимбической системы является наличие выраженных кольцевых нейронных связей. Эти связи дают возможность реверберации возбуждения, которая является механизмом его пролонгирования, повышения проводимости синапсов и формирования памяти. Реверберация возбуждения создает условия для сохранения единого функционального состояния структур замкнутого круга и передачу этого состояния другим структурам мозга. Важнейшим циклическим образованием лимбической системы является круг Пейпеца, идущий от гиппокампа через свод к мамиллярным телам, затем к передним ядрам таламуса, далее в поясную извилину и через парагиппокампальную извилину обратно к гиппокампу. Этот круг играет большую роль в формировании эмоций, обучении и памяти. Другой лимбический круг идет от миндалины через терминальную полоску к мамиллярным телам гипоталамуса, затем к лимбической области среднего мозга и обратно к миндалинам. Этот круг имеет значение в формировании агрессивно-оборонительных, пищевых и сексуальных реакций.

Функции лимбической системы

Наиболее общая функция лимбической системы состоит в том, что она, получая информацию о внешней и внутренней среде организма, после сравнения и обработки этой информации запускает через эфферентные выходы вегетативные, соматические и поведенческие реакции, обеспечивающие приспособление организма к внешней среде и сохранение внутренней среды на определенном уровне. Эта функция осуществляется через деятельность гипоталамуса. Механизмы приспособления, которые осуществляются лимбической системой, связаны с регуляцией последней висцеральных функций.

Важнейшей функцией лимбической системы является формирование эмоций. В свою очередь, эмоции являются субъективным компонентом мотиваций – состояний, запускающих и реализующих поведение, направленное на удовлетворение возникших потребностей. Через механизм эмоций лимбическая система улучшает приспособление организма к изменяющимся условиям среды. В выполнении данной функции участвуют гипоталамус, миндалина и вентральная лобная кора. Гипоталамус является структурой, ответственной преимущественно за вегетативные проявления эмоций. При стимуляции миндалины у человека возникает страх, гнев, ярость. При удалении миндалин появляется неуверенность и тревожность. Кроме этого миндалина участвует в процессе сравнения конкурирующих эмоций, выделения доминирующей эмоции, то есть другими словами миндалина влияет на выбор поведения.

9. Базальные ганглии, их функции

Поясная извилина играет роль главного интегратора различных систем мозга, формирующих эмоции, так как она имеет обширные связи, как с новой корой, так и со стволовыми центрами. Вентральная лобная кора также играет существенную роль в регуляции эмоций. При ее поражении наступает эмоциональная тупость.

Функция формирования памяти и осуществление обучения связана преимущественно с кругом Пейпеца. Вместе с тем в однократном обучении большое значение имеет миндалина, благодаря ее свойству индуцировать сильные отрицательные эмоции, способствуя быстрому и прочному формированию временной связи. Гиппокамп и связанные с ним задние зоны лобной коры также ответственны за память и обучение. Эти образования осуществляют переход кратковременной памяти в долговременную. Повреждение гиппокампа ведет к нарушению усвоения новой информации, образования промежуточной и долговременной памяти.

Электрофизиологической особенностью гиппокампа является то, что в ответ на сенсорное раздражение, стимуляцию ретикулярной формации и заднего гипоталамуса в гиппокампе развивается синхронизация электрической активности в виде низкочастотного θ-ритма. При этом в новой коре, напротив, возникает десинхронизация в виде высокочастотного β-ритма. Пейсмекером θ-ритма является медиальное ядро перегородки. Другой электрофизиологической особенностью гиппокампа является его уникальная способность в ответ на стимуляцию отвечать длительной посттетанической потенциацией и увеличением амплитуды постсинаптических потенциалов своих клеток-зерен. Посттетаническая потенциация облегчает синаптическую передачу и лежит в основе механизма формирования памяти. Ультраструктурным проявлением участия гиппокампа в образовании памяти является увеличение числа шипиков на дендритах его пирамидных нейронов, что обеспечивает усиление синаптической передачи возбуждения и торможения.

Базальные ядра

Базальные ядра – это совокупность трех парных образований, расположенных в конечном мозге в основании больших полушарий: филогенетически древней части – бледного шара, более позднего образования – полосатого тела и наиболее молодой части – ограды. Бледный шар состоит из наружного и внутреннего сегментов; полосатое тело – из хвостатого ядра и скорлупы. Ограда расположена между скорлупой и островковой корой. В функциональном отношении в базальные ганглии включают субталамические ядра и черную субстанцию.

Функциональные связи базальных ядер

Возбуждающая афферентная импульсация поступает преимущественно в полосатое тело в основном из трех источников: 1) от всех областей коры прямо и через таламус; 2) от неспецифических ядер таламуса; 3) от черной субстанции.

Среди эфферентных связей базальных ганглиев можно отметить три главных выхода:

· от полосатого тела тормозящие пути идут к бледному шару непосредственно и с участием субталамического ядра; от бледного шара начинается самый важный эфферентный путь базальных ядер, идущий преимущественно в двигательные вентральные ядра таламуса, от них возбуждающий путь идет в двигательную кору;

· часть эфферентных волокон из бледного шара и полосатого тела идет к центрам ствола мозга (ретикулярная формация, красное ядро и далее в спинной мозг), а также через нижнюю оливу в мозжечок;

· от полосатого тела тормозящие пути идут к черной субстанции и после переключения – к ядрам таламуса.

Следовательно, базальные ганглии являются промежуточным звеном. Они связывают ассоциативную и, частично, сенсорную кору с двигательной корой. Поэтому в структуре базальных ядер выделяют несколько параллельно действующих функциональных петель, связывающих их с корой больших полушарий.

Предыдущая13141516171819202122232425262728Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Особенности базальных ядер

Данный материал НЕ НАРУШАЕТ авторские права никаких физических или юридических лиц.
Если это не так — свяжитесь с администрацией сайта.
Материал будет немедленно удален.
Электронная версия этой публикации предоставляется только в ознакомительных целях.
Для дальнейшего её использования Вам необходимо будет
приобрести бумажный (электронный, аудио) вариант у правообладателей.

На сайте «Глубинная психология: учения и методики» представлены статьи, направления, методики по психологии, психоанализу, психотерапии, психодиагностике, судьбоанализу, психологическому консультированию; игры и упражнения для тренингов; биографии великих людей; притчи и сказки; пословицы и поговорки; а также словари и энциклопедии по психологии, медицине, философии, социологии, религии, педагогике.

Все книги (аудиокниги), находящиеся на нашем сайте, Вы можете скачать бесплатно без всяких платных смс и даже без регистрации. Все словарные статьи и труды великих авторов можно читать онлайн.

Последствия повреждений базальных ганглиев

Предыдущая12345678Следующая

При повреждении БГ возникают двигательные расстройства. В 1817 году британский врач Д. Паркинсон описал картину болезни, которую можно было бы назвать трясущимся параличом. Она поражает многих пожилых людей. В начале ХХ века было установлено, что у людей, страдающих болезнью Паркинсона, в чёрной субстанции исчезает пигмент. Позже удалось установить, что болезнь развивается вследствие прогрессирующей гибели дофаминергических нейронов чёрной субстанции, после которой нарушается баланс между тормозными и возбуждающими выходами из полосатого тела. При болезни Паркинсона можно выделить три основных типа двигательных расстройств. Во-первых, это мышечная ригидность или значительное повышение тонуса мышц, в связи с чем человеку трудно осуществить любое движение: трудно подняться со стула, трудно повернуть голову, не поворачивая одновременно всё туловище. Ему не удается расслабить мышцы на руке или ноге так, чтобы врач мог согнуть или разогнуть конечность в суставе, не встречая при этом значительного сопротивления. Во-вторых, наблюдается резкое ограничение сопутствующих движений или акинезия: исчезают движения рук при ходьбе, пропадает мимическое сопровождение эмоций, становится слабым голос. В-третьих, появляется крупноразмашистый тремор в покое — дрожание конечностей, особенно дистальных их частей; возможен тремор головы, челюсти, языка.

Таким образом, можно констатировать, что потеря дофамиеэргических нейронов чёрной субстанции приводит к тяжелому поражению всей двигательной системы. На фоне сниженной активности дофаминергических нейронов относительно возрастает активность холинергических структур полосатого тела, чем и можно объяснить большинство симптомов болезни Паркинсона.

Роль базальных ядер в обеспечении двигательных функций

Открытие этих обстоятельств болезни в 50-х годах ХХ века ознаменовало собой прорыв в области нейрофармакологии, поскольку привело не только к возможности её лечения, но сделало понятным, что деятельность мозга может нарушаться в связи с поражением небольшой группы нейронов и зависит от определенных молекулярных процессов.

Для лечения болезни Паркинсона стали использовать предшественник синтеза дофамина — L-ДОФА (диоксифенилаланин), который, в отличие от дофамина, способен преодолевать гематоэнцефалический барьер, т.е. проникать в мозг из кровяного русла. Позже нейромедиаторы и их предшественники, а также вещества, влияющие на передачу сигналов в определённых структурах мозга, стали использовать для лечения психических заболеваний.

При поражении нейронов хвостатого ядра и скорлупы, использующих в качестве медиаторов ГАМК или ацетилхолин, баланс между этими медиаторами и дофамином изменяется, возникает относительный избыток дофамина. Это приводит к появлению непроизвольных и нежелательных для человека движений – гиперкинезов. Одним из примеров гиперкинетического синдрома является хорея или пляска святого Витта, при которой появляются насильственные движения, отличающиеся разнообразием и беспорядочностью, они напоминают произвольные движения, но никогда не объединяются в координированные действия. Такие движения возникают и во время покоя и во время произвольных двигательных актов.

Запомните : БАЗАЛЬНЫЕ ГАНГЛИИ :

Мозжечок и базальные ганглии относят к структурам программного обеспечения движений. В них заложены генетически детерминированные, врожденные и приобретённые программы взаимодействия разных групп мышц в процессе выполнения движений.

Высший уровень регуляции двигательной активности осуществляет кора головного мозга.

РОЛЬ КОРЫ БОЛЬШИХ ПОЛУШАРИЙ

В РЕГУЛЯЦИИ ТОНУСА И УПРАВЛЕНИИ ДВИЖЕНИЯМИ .

«Третий этаж» или уровень регуляции движений — это кора больших полушарий, которая организует формирование программ движений и их реализацию в действие. Зарождающийся в ассоциативных зонах коры замысел будущего движения поступает в моторную кору. Нейроны моторной коры организуют целенаправленное движение с участием БГ, мозжечка, красного ядра, вестибулярного ядра Дейтерса, ретикулярной формации, а также – с участием пирамидной системы, непосредственно воздействующей на альфа-мотонейроны спинного мозга.

Корковое управление движениями возможно лишь при одновременном участии всех моторных уровней.

Двигательная команда, передаваемая из коры головного мозга, оказывает воздействие через более низкие моторные уровни, причём каждый из них вносит свой вклад в окончательную двигательную реакцию. Без нормальной деятельности нижележащих моторных центров корковое моторное управление было бы несовершенным.

Сейчас уже многое известно о функциях моторной коры. Её рассматривают как центральную структуру, управляющую самыми тонкими и точными произвольными движениями. Именно в моторной коре строится конечный и конкретный вариант моторного управления движениями. Моторная кора использует два принципа управления движениями: контроль через петли обратной сенсорной связи и через механизмы программирования. Это достигается тем, что к ней сходятся сигналы от мышечной системы, от сенсомоторной, зрительной и других отделов коры, которые и используются для моторного контроля и коррекции движения.

Афферентные импульсы к моторным зонам коры поступают через моторные ядра таламуса. Через них кора связана с ассоциативными и сенсорными зонами самой коры, с подкорковыми базальными ганглиями и мозжечком.

Моторная область коры регулирует движения с помощью эфферентных связей трёх типов: а) прямо на мотонейроны спинного мозга через пирамидный тракт, б) косвенно при помощи связи с нижележащими двигательными центрами, в) ещё более косвенная регуляция движений осуществляется путём влияния на передачу и обработку информации в чувствительных ядрах мозгового ствола и таламуса.

Как уже говорилась, сложную моторную деятельность, тонкие координированные действия определяют моторные области коры, от которых к стволу и спинному мозгу направляются два важных пути: кортикоспинальный и кортикобульбарный, которые иногда объединяют под названием пирамидный тракт . Кортикоспинальный путь, обеспечивающий управление мышцами туловища и конечностей, заканчивается либо прямо на мотонейронах, либо на интеронейронах спинного мозга. Кортикобульбарный путь осуществляет контроль двигательных ядер черепно-мозговых нервов, управляющих мышцами лица и движениями глаз.

Пирамидный тракт является самым большим нисходящим моторным путём; он образован приблизительно одним миллионом аксонов, больше половины которых принадлежит нейронам, которые называются клетки Беца или гигантские пирамидные клетки. Они расположены в V слое первичной моторной коры в области прецентральной извилины. Именно от них берёт начало кортикоспинальный путь или так называемая пирамидная система. Через посредство вставочных нейронов или путём прямого контакта волокна пирамидного тракта образуют возбуждающие синапсы на мотонейронах сгибателей и тормозные –на мотонейронах разгибателей в соответствующих сегментах спинного мозга. Спускаясь к мотонейронам спинного мозга, волокна пирамидного тракта отдают многочисленные коллатерали к другим центрам: красному ядру, ядрам моста, ретикулярной формации ствола мозга, а также к таламусу. Эти структуры связаны с мозжечком. Благодаря связям моторной коры с двигательными подкорковыми центрами и мозжечком, она участвует в обеспечении точности выполнения всех целенаправленных движений — как произвольных, так и непроизвольных.

Пирамидный путь частично перекрещивается, поэтому инсульт или иное повреждение правой моторной зоны вызывает паралич левой половины тела, и наоборот

До сих пор можно встретить, наряду термином пирамидная система, ещё один: экстрапирамидный путь или экстрапирамидная система. Этот термин применялся для обозначения других двигательных путей, идущих от коры к двигательным центрам. В современной физиологической литературе термин экстрапирамидный путь и экстрапирамидная система не используется.

Нейроны в двигательной коре, также как и в сенсорных областях, организованы в вертикальные колонки Корковая моторная (другое название – двигательная) колонка – это небольшой ансамбль двигательных нейронов, которые контролируют группу связанных между собой мышц. Как сейчас полагают, их важная функция состоит не просто в том, чтобы активировать те или другие мышцы, а в том, чтобы обеспечивать определенное положение сустава. В несколько общей форме можно сказать, что кора кодирует наши движения не путем приказов о сокращении отдельных мышц, а путем команд, обеспечивающих определенное положение суставов. Одна и та же группа мышц может быть представлена в разных колонках и может участвовать в разных движениях

Пирамидная система является основой наиболее сложной формы двигательной активности — произвольных, целенаправленных движений. Кора больших полушарий является субстратом для обучения новым видам движений (например, спортивным, производственным и т.д.). В коре хранятся сформированные в течение жизни программы движений,

Ведущая роль в построении новых моторных программ принадлежит передним отделам КБП (премоторной, префронтальной коре). Схема взаимодействия ассоциативных, сенсорных и моторных областей коры при планировании и организации движений представлена на рисунке 14 .

Рисунок 14. Схема взаимодействия ассоциативных, сенсорных и моторных областей при планировании и организации движений

Планировать предстоящие действия начинает префронтальная ассоциативная кора лобных долей на основе информации, поступающей, в первую очередь, от заднетеменных областей, с которыми её связывает множество нейронных путей. Выходная активность префронтальной ассоциативной коры адресована премоторным или вторичным моторным областям, которые создают конкретный план предстоящих действий и непосредственно готовят моторные системы к движению. К вторичным двигательным областям относятся премоторная кора и добавочный моторный ареал (добавочная моторная область). Выходная активность вторичной моторной коры направлена к первичной моторной коре и к подкорковым структурам. Премоторная область контролирует мышцы туловища и проксимальные отделы конечностей. Эти мышцы особенно важны в начальной фазе выпрямления тела или движения руки к намеченной цели. В отличие от этого, добавочный моторный ареал участвует в создании модели двигательной программы, а также программирует последовательность движений, которые выполняются билатерально (например, когда надо действовать обеими конечностями).

Вторичная моторная кора занимает в иерархии двигательных центров главенствующее над первичной моторной корой положение: во вторичной коре движения планируются, а первичная — этот план выполняет.

Первичная моторная кора обеспечивает простые движения. Она расположена в передних центральных извилинах мозга. Исследования на обезьянах показали, что в передней центральной извилине имеются неравномерно распределенные зоны, управляющие различными мышцами тела. В этих зонах мышцы тела представлены соматотопически, то есть каждой мышце соответствует свой участок области (двигательный гомункулус) (рис 15) .

Рисунок 15. Соматотопическая организация первичной моторной коры — двигательный гомункулус

Как показано на рисунке, самое большее место занимает представительство мышц лица, языка, кистей рук, пальцев — то есть тех частей тела, которые несут наибольшую функциональную нагрузку и могут совершать самые сложные, тонкие и точные движения, и в то же время сравнительно мало представлены мышцы туловища и ног.

Моторная кора управляет движением, используя информацию, поступающую как по сенсорным путям от других отделов коры, так и от генерируемых в ЦНС моторных программ, которые актуализируются в базальных ганглиях и мозжечке и доходят до моторной коры через таламус и префронтальную кору.

Полагают, что в БГ и в мозжечке уже заложен механизм, который может актуализировать хранящиеся в них двигательные программы. Однако, для приведения в действие всего механизма необходимо, чтобы в эти структуры поступил сигнал, который послужил бы начальным толчком процесса. По-видимому, существует общий биохимический механизм актуализации моторных программ в результате роста активности дофаминергических и норадренергических систем в мозге.

Согласно гипотезе, высказанной П. Робертсом, актуализация моторных программ происходит вследствие активации командных нейронов. Существует два типа командных нейронов. Одни из них лишь запускают ту или иную двигательную программу, но не участвуют в её дальнейшем осуществлении. Эти нейроны называются нейроны-триггеры. Командные нейроны другого типа получили название воротных нейронов. Они поддерживают или видоизменяют двигательные программы лишь будучи в состоянии постоянного возбуждения. Такие нейроны обычно управляют позными или ритмическими движениями. Сами командные нейроны могут контролироваться и затормаживаться сверху. Снятие торможения с командных нейронов повышает их возбудимость и тем самым высвобождает «предпрограммированные» цепи для той деятельности, для которой они предназначены

В заключение следует отметить, что двигательные (моторные) области коры больших полушарий служат последним звеном, в котором образованный в ассоциативных и других зонах (а не только в моторной зоне) замысел превращается в программу движения. Главной задачей моторной коры является выбор группы мышц, ответственных за выполнение движений в каком-либо суставе, а не непосредственная регуляция силы и скорости их сокращения. Эту задачу выполняют нижележащие центры вплоть до мотонейронов спинного мозга. В процессе выработки и реализации программы движения моторная область коры получает информацию от БГ и мозжечка, которые посылают к ней корректирующие сигналы.

Запомните :

КОРА БОЛЬШИХ ПОЛУШАРИЙ :

Заметим, что пирамидные, руброспинальные и ретикулоспинальные пути активируют преимущественно флексорные, а вестибулоспинальные — преимущественно экстензорные мотонейроны спинного мозга. Дело в том, что флексорные двигательные реакции являются основными рабочими двигательными реакциями организма и требуют более тонкой и точной активации и координации. Поэтому в процессе эволюции большинство нисходящих путей специализировалось по активации именно флексорных мотонейронов.

Предыдущая12345678Следующая


В основании больших полушарий (нижняя стенка боковых желудочков) расположены ядра серого вещества - базальные ганглии. Они составляют примерно 3% от объема полушарий. Все базальные ганглии функционально объединены в две системы. Первая группа ядер представляет собой стриопаллидарную систему (рис. 41, 42, 43). К ним относятся: хвостатое ядро (nucleus caudatus), скорлупа (putamen) и бледный шар (globus pallidus). Скорлупа и хвостатое ядро имеют слоистую структуру, и поэтому их общее название - полосатое тело (corpus striatum). Бледный шар не имеет слоистости и выглядит светлее стриатума. Скорлупа и бледный шар объединены в чечевицеобразное ядро (nucleus lentiformis). Скорлупа образует наружный слой чечевицеобразного ядра, а бледный шар - внутренние его части. Бледный шар, в свою очередь, состоит из наружного

и внутреннего члеников.
Анатомически хвостатое ядро тесно связано с боковым желудочком. Расположенная впереди и медиально расширенная его часть - головка хвостатого ядра образует боковую стенку переднего рога желудочка, тело ядра - нижнюю стенку центральной части желудочка, а тонкий хвост - верхнюю стенку нижнего рога. Следуя форме бокового желудочка, хвостатое ядро охватывает дугой чечевицеобразное ядро (рис. 42, 1; 43, 1/). Друг от друга хвостатое и чечевицеобразное ядра отделены прослойкой белого вещества - частью внутренней капсулы (capsula interna). Другая часть внутренней капсулы отделяет чечевицеобразное ядро от нижележащего таламуса (рис. 43,
4).
80

(справа - ниже уровня дна бокового желудочка; слева - над дном бокового желудочка; IV желудочек мозга вскрыт сверху):
1 - головка хвостатого ядра; 2 - скорлупа; 3 - кора мозгового островка; 4 - бледный шар; 5 - ограда; 6

Таким образом, строение дна бокового желудочка (представляющего собой стриопаллидарную систему) схематично можно представить себе так: стенку самого желудочка образует слоистое хвостатое ядро, затем ниже идет прослойка белого вещества -
81

Рис. 42. Топография базальных ядер конечного мозга и стволовых структур (вид
слева спереди):
1 - хвостатое ядро; 2 - скорлупа; 3 - миндалина; 4 - черная субстанция; 5 - лобная кора; 6 - гипоталамус; 7 - таламус

Рис. 43. Топография базальных ядер конечного мозга и стволовых структур (вид
слева сзади):
1 - хвостатое ядро; 2 - скорлупа; 3 - бледный шар; 4 - внутренняя капсула; 5 - субталамическое ядро; 6

  • черная субстанция; 7 - таламус; 8 - подкорковые ядра мозжечка; 9 - мозжечок; 10 - спинной мозг; 11
1 2 3 4

внутренняя капсула, под ней слоистая скорлупа, еще ниже бледный шар и опять слой внутренней капсулы, лежащий на ядерной структуре промежуточного мозга - таламусе.
Стриопаллидарная система получает афферентные волокна от неспецифических медиальных таламических ядер, лобных отделов коры больших полушарий, коры мозжечка и черной субстанции среднего мозга. Основная масса эфферентных волокон стриатума радиальными пучками сходится к бледному шару. Таким образом, бледный шар является выходной структурой стриопаллидарной системы. Эфферентные волокна бледного шара идут к передним ядрам таламуса, которые связаны с фронтальной и теменной корой больших полушарий. Часть эфферентных волокон, не переключающихся в ядре бледного шара, идет к черной субстанции и красному ядру среднего мозга. Стриопаллидум (рис. 41; 42), совместно со своими проводящими путями, входит в экстрапирамидную систему, оказывающую тоническое влияние на моторную деятельность. Эта система контроля над движениями называется экстрапирамидной потому, что переключается на пути к спинному мозгу, минуя пирамиды продолговатого мозга. Стриопаллидарная система является высшим центром непроизвольных и автоматизированных движений, снижает мышечный тонус, тормозит движения, осуществляемые двигательной корой. Латеральнее стриопаллидарной системы базальных ганглиев расположена тонкая пластинка серого вещества - ограда (claustrum). Она ограничена со всех сторон волокнами белого вещества

  • наружной капсулой (capsula externa).
Остальные базальные ядра входят в лимбическую систему мозга (см. раздел 6.2.5.3). Впереди от

конца нижнего рога бокового желудочка в белом веществе височной доли больших полушарий расположена плотная группа ядер - миндалевидное тело (amigdalae) (рис. 42, 3). И наконец, в пределах прозрачной перегородки лежит ядро перегородки (nucleus septipellucidi) (см. рис. 37, 21). Кроме перечисленных базальных ядер в лимбическую систему входят: кора поясной извилины лимбической доли больших полушарий, гиппокамп, мамиллярные ядра гипоталамуса, передние ядра таламуса, структуры обонятельного мозга.

К базальным ганглиям относятся следующие анатомические образования: полосатое тело (стриатум), состоящее из хвостатого ядра и скорлупы; бледный шар (паллидум), подразделяющийся на внутренний и внешний отделы; черная субстанция и субталамическое ядро Льюиса.

Функции БГ:

1. Центры сложных безусловных рефлексов и инстинктов

2. Участие в формировании условных рефлексов

3. Координация тонуса мышц и произвольных движений. Контроль амплитуды, силы, направления движений

4. Координация сочетанных двигательных актов

5. Контроль за движением глаз (саккады).

6. Программирование сложных целенаправленных движений

7. Центры торможения агрессивных реакций

8. Высшие психические функции (мотивации, прогнозирование, познавательная деятельность). Сложные формы восприятия внешней информации (например, осмысление текста)

9. Участие в механизмах сна

Афферентные связи базальных ганглиев . Большая часть афферентных сигналов, приходящих к базальным ганглиям поступает в полосатое тело. Эти сигналы исходят почти исключительно из трех источников:

От всех областей коры больших полушарий;

От внутрипластинчатых ядер таламуса;

От черной субстанции (по дофаминэргическому пути).

Эфферентные волокна от стриатума идут к бледному шару и черной субстанции. От последней начинается не только дофаминэргический путь к полосатому телу, но и пути, идущие к таламусу.

От внутреннего отдела бледного шара берет начало самый важный из всех эфферентных трактов базальных ганглиев, заканчивающийся в таламусе, а так же в крыше среднего мозга. Посредством стволовых образований, с которыми связаны базальные ганглии, центробежные импульсы следуют к сегментарным двигательным аппаратам и мускулатуре по нисходящим проводникам.

От красных ядер - по руброспинальному тракту;

От ядра Даркшевича – по заднему продольному пучку к ядрам 3, 4,6 нервов и через его посредство к ядру вестибулярного нерва;

От ядра вестибулярного нерва – по вестибулоспинальному тракту;

От четверохолмия - по тектоспинальному тракту;

От ретикулярной формации - по ретикулоспинальному тракту.

Таким образом, базальные ганглии играют, главным образом, роль промежуточного звена в цепи, связываемой двигательные области коры со всеми остальными ее областями.

В раннем филогенезе, когда кора головного мозга еще не была развита, стриопаллидарная система являлась главным двигательным центром, определяющим поведение животного. Чувствительные импульсы, притекающие из зрительного бугра, перерабатывались здесь в двигательные, направляющиеся к сегментарному аппарату и мускулатуре. За счет стрио-паллидарных аппаратов осуществлялись диффузные движения тела достаточно сложного характера: передвижения, плавание и др.


Одновременно с этим обеспечивалась поддержка общего мышечного тонуса, «готовность» сегментарного аппарата к действию, перераспределение мышечного тонуса при движениях.

При дальнейшей эволюции нервной системы ведущая роль в движениях переходит к коре головного мозга с ее двигательным анализатором и пирамидной системой. Наконец, у человека возникают сложнейшие действия, носящие целенаправленный, произвольный характер с тонкой дифференцировкой отдельных движений.

Тем не менее, стриопаллидарная система не утратила своего значения у человека. Она лишь переходит в соподчиненное, субординированное положение, обеспечивая «настройку» двигательных аппаратов, их «готовность к действию» и необходимый для быстрого осуществления движения мышечный тонус.

Становление функции базальных ганглиев в онтогенезе . Базальные ганглии развиваются интенсивнее, чем зрительные бугры. Бледное ядро миелинизируется раньше, чем полосатое тело и кора головного мозга. Установлено, что миелинизация в бледном шаре почти полностью заканчивается к 8 месяцам развития плода. В полосатом теле миелинизация начинается у плода, а заканчивается только к 2 месяцам жизни. Хвостатое тело в течение первых 2 лет жизни увеличивается в 2 раза, что связывают с развитием у ребенка автоматических двигательных актов.

Двигательная активность новорожденного в значительной мере связана с бледным ядром, импульсы от которого вызывают некоординированные движения головы, туловища и конечностей.

У новорожденного паллидум уже имеет связи со зрительным бугром, подбугровой областью и черной субстанцией. Связь паллидума со стриатутом развивается позже, часть стриопаллидарных волокон оказывается миелинизированная на первом месяце жизни, а другая часть - лишь к 6 месяцам и позже.

Считают, что такие акты, как плач, в моторном отношении осуществляются за счет одного паллидума. С развитием полосатого тела связано появление мимических движений, а затем умение сидеть и стоять. Так как стриатум оказывают тормозное влияние на паллидум, то создается постепенное разделение движений. Для того чтобы сидеть, ребенок должен уметь вертикально держать голову и спину. Это появляется у него к двум месяцам. Сидеть начинает к 6-8 месяцам.

В первые месяцы жизни у ребенка имеется отрицательная реакция опоры: при попытке поставить его на ножки он поднимает их и подтягивает к животу. Затем эта реакция становится положительной: при прикосновении к опоре ножки разгибаются. В 9 месяцев ребенок может стоять с помощью поддержки, в 10 месяцев он стоит свободно.

С 4-5 месячного возраста довольно быстро развиваются произвольные движения, но они еще длительное время сопровождаются многообразными дополнительными движениями.

Появление произвольных (таких как схватывание) и выразительных движений (улыбка, смех) связывают с развитием стриатной системы и двигательных центров коры больших полушарий. Громко смеяться ребенок начинает с 8 месяцев.

По мере роста и развития всех отделов головного мозга и коры больших полушарий движение ребенка становится менее обобщенными и более координированными. Только к концу дошкольного периода устанавливается определенное равновесие коркового и подкоркового двигательных механизмов.

Базальные ганглии – это совокупность трех парных образований, расположенных в конечном мозге в основании больших полушарий: филогенетически более древней его части – бледного шара, более позднего образования – полосатого тела т наиболее молодой в эволюционном плане – ограды.

Бледный шар состоит из наружного и внутреннего сегментов. Полосатое тело – из хвостатого ядра и скорлупы. Ограда – это образование, которое располагается между скорлупой и островковой корой.

Функциональные связи базальных ганглиев. Возбуждающая афферентная импульсация поступает в полосатое тело в основном из трех источников:

      от всех областей коры мозга непосредственно через таламус;

      от неспецифических интраламинарных ядер таламуса;

      от черного вещества.

Среди эфферентных связей базальных ганглиев можно выделить три главных выхода:

      от полосатого тела тормозящие пути идут к бледному шару непосредственно и с участием субталамического ядра. От бледного шара начинается самый важный эфферентный путь базальных ганглиев, идущий преимущественно в таламус (а именно в его двигательные вентральные ядра), а от них возбуждающий путь идет в двигательную кору;

      часть эфферентных волокон из бледного шара и полосатого тела идет к центрам ствола мозга (ретикулярная формация, красное ядро и далее в спинной мозг), а также через нижнюю оливу в мозжечок;

      от полосатого тела тормозящие пути идут к черному веществу, и после переключения – к ядрам таламуса.

Оценивая связи базальных ганглиев в целом, ученые отмечают, что данная структура является специфическим промежуточным звеном (станцией переключения), связывающей ассоциативную и, частично, сенсорную кору с двигательной корой.

В структуре связей базальных ганглиев выделяют несколько параллельно действующих функциональных петель, соединяющих базальные ганглии и кору больших полушарий.

Скелетно-моторная петля . Соединяет премоторную, двигательную и соматосенсорную области коры со скорлупой базальных ганглиев, импульсация из которых идет в бледный шар и черное вещество и далее через двигательное вентральное ядро возвращается в премоторную область коры. Ученые полагают, что эта петля служит для регуляции таких параметров движения, как амплитуда, сила и направление.

Глазодвигательная петля . Соединяет области коры, контролирующие направление взгляда (поле 8 лобной коры и поле 7 теменной коры), с хвостатым ядром базальных ганглиев. Оттуда импульсация поступает в бледный шар и черное вещество, из которых она проецируется соответственно в ассоциативное медиодорсальное и переднее релейное вентральное ядра таламуса, а из них возвращается в лобное глазодвигательное поле 8. Данная петля принимает участие в регуляции, например, скачкообразных движений глаз.

Ученые также предполагают существование сложных петель, по которым импульсация из лобных ассоциативных зон коры поступает в структуры базальных ганглиев (хвостатое ядро, бледный шар, черное вещество) и через медиодорсальное и вентральное переднее ядра таламуса возвращается в ассоциативную лобную кору. Считается, что эти петли участвуют в осуществлении высших психофизиологических функций мозга: контроле мотиваций, прогнозировании результатов действий, познавательной (когнитивной) деятельности.

Наряду с выделением непосредственных функциональных связей базальных ганглиев в целом, ученые выделяют и функции отдельных образований базальных ганглиев. Одним из таких образований, как было отмечено выше, является полосатое тело.

Функции полосатого тела . Основными объектами функционального влияния полосатого тела являются бледный шар, черное вещество, таламус и моторная кора.

Влияние полосатого тела на бледный шар . Осуществляется преимущественно через тонкие тормозные волокна. В связи с этим, полосатое тело оказывает на бледный шар, в основном, тормозящее влияние.

Влияние полосатого тела на черное вещество . Между черным веществом и полосатым телом имеются двусторонние связи. Нейроны полосатого тела оказывают тормозящее влияние на нейроны черного вещества. В свою очередь, нейроны черного вещества через медиатор дофамин оказывают на фоновую активность нейронов полосатого тела модулирующее воздействие. Характер этого влияния (тормозной, возбуждающий или и тот и другой) учеными до настоящего времени не установлен. Кроме влияния на полосатое тело, черное вещество оказывает тормозящее действие на нейроны таламуса и получает возбуждающие афферентные входы от субталамического ядра.

Влияние полосатого тела на таламус . В середине ХХ столетия учеными было установлено, что раздражение участков таламуса вызывает появление проявлений, типичных для фазы медленного сна. Впоследствии было доказано, что этих проявлений можно добиться не только раздражением таламуса, но и полосатого тела. Разрушение же полосатого тела нарушает цикличность сон – бодрствование (уменьшает время сна в этом цикле).

Влияние полосатого тела на моторную кору . Клинические исследования, проведенные в 1980 гг. О.С.Андриановым доказали тормозное воздействие хвоста полосатого тела на двигательную кору.

Прямая стимуляция полосатого тела посредством вживления электродов, по данным клиницистов, вызывает относительно простые двигательные реакции: поворот головы и туловища в сторону, противоположную раздражению, сгибание конечности на противоположной стороне и пр. Стимуляция некоторых зон полосатого тела вызывает задержку поведенческих реакций (ориентировочной, пищедобывательной и пр.), а также подавление ощущения боли.

Поражение полосатого тела (в частности его хвостатого ядра) вызывает избыточные движения. Больной как бы не может справиться со своей мускулатурой. Экспериментальные исследования, проведенные на млекопитающих, показали, что при повреждении полосатого тела у животных стабильно развивается синдром гиперактивности. Число бесцельных движений в пространстве увеличивается в 5 – 7 раз.

Еще одним образованием базальных ганглиев является бледный шар, который также выполняет свои функции.

Функции бледного шара. Получая из полосатого тела преимущественно тормозные влияния, бледный шар оказывает модулирующее воздействие на двигательную кору, ретикулярную формацию, мозжечок и красное ядро. При стимуляции бледного шара у животных преобладающими являются элементарные двигательные реакции в виде сокращения мышц конечностей, шеи и т.д. Кроме того, выявлено влияние бледного шара и на некоторые зоны гипоталамуса (центр голода и задний гипоталамус), о чем свидетельствует отмечаемая учеными активация пищевого поведения. Разрушение бледного шара сопровождается снижением двигательной активности. Возникает отвращение к каким-либо движениям (адинамия), сонливость, эмоциональная тупость, затрудняются осуществление имеющихся и выработка новых условных рефлексов.

Таким образом, участие базальных ганглиев в регуляции движений является главной, но не единственной их функцией. Наиболее важной двигательной функцией является выработка (наряду с мозжечком) сложных двигательных программ, которые реализуются через моторную кору и обеспечивают двигательный компонент поведения. Вместе с тем, базальные ганглии контролируют такие параметры движений, как сила, амплитуда, скорость и направление. Кроме этого, базальные ганглии включаются в регуляцию цикла сон – бодрствование, в механизмы формирования условных рефлексов, в сложные формы восприятия (например, осмысление текста).

Вопросы для самоконтроля:

    Чем представлены базальные ганглии?

    Общая характеристика функциональных связей базальных ганглиев.

    Характеристика функциональных петель базальных ганглиев.

    Функции полосатого тела.

    Функции бледного шара.

Загрузка...